BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

CLASS:	(MID SEMESTER EXAMINATION MO/SP20**) IMSC. S		:1			
BRANCH	I: PHYSICS SESSION			MO/2022		
TIME:	SUBJECT: PH105R1 MATHEMATICAL PHYSICS - I 02 HOURS FULL MA			RKS: 25		
INSTRUC 1. The c 2. Atten 3. The r 4. Table	CTIONS: question paper contains 5 questions each of 5 marks and total 25 mark npt all questions. nissing data, if any, may be assumed suitably. es/Data handbook/Graph paper etc., if applicable, will be supplied to t	s. he candi	dates		-	
Q.1(a)	Explain Taylor and Binomial expansion using an example.		[2]	CO 1	BL 1,2	
Q.1(b)	Compute the first and second partial derivative of $f(x,y) = 2x^3y - 3x^3y$	2	[3]	1	2	
Q.2(a) Q.2(b)	Consider the differential: $f(x, y) = xdy + 3ydx$. Is it exact? Show your Solve the differential equation: $\frac{dy}{dx} + 4xy = 2x^2$	result.	[2] [3]	1 1	2 3	
Q.3(a)	Show that the dot product between two vectors remains invariant under rotations.		[2]	2	2	
Q.3(b)	Consider a harmonic oscillator (spring-mass system) defined by the natural frequency ω_0 and the initial conditions: $x(t = 0) = A, \dot{x}(t = 0) = 0$ (where the terms have usual meaning) under a driving force $a \sin(\omega t)$. Obtain the time-dependent motion of the oscillator.		[3]	1	3	
Q.4(a)	Write down the properties of Levi-Civita tensor ϵ_{ijk} .		[2]	2	1	
Q.4(b)	Consider a vector \vec{v} in the x-y plane undergoing a passive rotation by θ . Obtain how the vector \vec{v} transforms.		[3]	2	2	
Q.5	Show that $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{C} \cdot \vec{A}) - \vec{C}(\vec{A} \cdot \vec{B})$		[5]	2	1,2	

:::::: 17/01/2023 :::::M