BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)						
CLASS: BRANCI	I.M.Sc. I: PHYSICS		SEMESTER : I SESSION : MO/2022)22	
TIME:	3 Hours	SUBJECT: PH101 - MECHANICS	FULL MARKS: 50			
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 						
Q.1(a)	A rocket is an example of a	a variable mass system. Develop the equation of r	ocket [5]	CO 1	BL III
Q.1(b)	motion in free space. Potential energy of a one-c	dimensional system is given by $U(x) = x^2 + 10 \exp(-\frac{1}{2})$ of the system. Find and identify the stable & uns	$-x^2$). [-	1	,
Q.2(a)	laboratory frame and in cent		_	5]	2	II
Q.2(b)	A thick hollow cylinder of mass $M = 0.3$ kg, inner radius $R_1 = 1$ cm and outer radius [5] 2 $R_1 = 2$ cm starts rolling (without slipping) down a plane inclined at 30°. Find the velocity of cylinder at a distance of 1 m from the starting point.				2	III
Q.3(a) Q.3(b)	Solve the equation of motio	force problem can be reduced to one-body problem. n of a damped harmonic oscillator. State the criter , over damped or critically damped.		5] 5]	3 3	 , V
Q.4(a)		hat relates time derivatives of a vector in inertial f the expression for velocity and acceleration in a rot		5]	4	I, VI
Q.4(b)	Instantaneous position of a	particle is given as $\vec{\mathbf{r}} = 4\cos(8\pi t)\hat{\mathbf{i}} + 4\sin(8\pi t)\hat{\mathbf{j}}$ velocity of the particle in cylindrical coordinate syste		5]	4	V
Q.5(a)	Starting from Lorentz transf addition of velocities.	ormation equations, develop the formulae for relati	vistic [5]	5	III
Q.5(b)	Muons are created in upper a based laboratories alt	atmosphere due to cosmic rays and are detected at gr hough mean life-time of muons in the paradox by analyzing the problem from labor ns' frame of reference.	only	5]	5	IV

:::::15/03/2023:::::M