CLASS: B.TECH.
SEMESTER : V/VII
BRANCH: BT/CHEMICAL/CS/IT/EEE/ECE/ME
SESSION : MO/22
SUBJECT: PE309 PROJECT MANAGEMENT
TIME: 3 hrs.
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) How can standard routine production be differentiated from a project work?
[2]CO1, L2
Q.1(b) What do you mean by 'triple constraints' of a project?
[3]CO1,L1
Q.1(c) Explain various stages in project life cycle.
[5]CO3,L2
Q.2(a) State the roles of a project manager.
[2]CO1,L1
Q.2(b) What are the causes of delay in projects? How can you eliminate them?
[3]CO1,3,L2
Q.2(c) Explain the significance of different organization structures in the context of project management.
Q.3(a) Briefly explain 'Environmental Impact Assessment (EIA)'.
[2]CO2,L2
Q.3(b) Social cost benefit analysis (SCBA) is an important aspect in public projects - Justify.
[3]CO1,3,L4
Q.3(c) Explain the concept of feasibility study of a project with an example.
[5]CO1,3,L2
Q.4(a) What are the significance of slack and float times in project network?
[2]C01.4,L1
Q.4(b) Explain with diagram: activity on node (AON) and activity on arc (AOA)
[3]CO1,4,L2
[5]CO4,L3

Activity	Dependencies	Duration
A	-	2
B	-	2
C	-	4
D	-	8
E	A, F	3
F	B	4
G	C, D, E	3
H	D, G	2
I	E	7
J	G	6

Q.5(a) Distinguish between PERT and CPM.
[3]CO1,4,L4
Q.5(b) Consider the project network shown below.

Table: CPM project time and cost data

Activity	Normal Time (days)	Crash time (days)	Normal cost $(\$)$	Crash cost $(\$)$
a	4	3	400	800
b	8	5	600	2400
c	6	5	1000	1200
d	9	8	700	1400
e	5	2	1200	2700
Total Cost			$\$ 3900$	$\$ 8500$

Determine the minimum cost crash solution.

