BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

| CLASS:<br>BRANCH                                                    | BTECH<br>1: MECH & PIE                                                               |                                                                                                                                                                                        |                                |                                                                                                            |                 | SEMESTER : III<br>SESSION : MO/2022 |           |         |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|-----------|---------|--|--|
| TIME:                                                               | 3                                                                                    | SUBJECT: PE214 METALLU<br>:00 Hours                                                                                                                                                    | FULL MARKS: 50                 |                                                                                                            |                 |                                     |           |         |  |  |
| INSTRUC<br>1. The c<br>2. Atter<br>3. The r<br>4. Befor<br>5. Table | CTION<br>questi<br>npt al<br>missir<br>re att<br>es/Dat                              | IS:<br>ion paper contains 5 questions each o<br>Il questions.<br>ng data, if any, may be assumed suita<br>empting the question paper, be sure<br>ta hand book/Graph paper etc. to be s | of 10<br>bly.<br>that<br>suppl | marks and total 50 marks.<br>you have got the correct question pa<br>lied to the candidates in the examina | per.<br>tion ha |                                     |           |         |  |  |
| Q.1(a)                                                              | Wri<br>I.                                                                            | te one-word answers for the following:<br>The required mill load increases in e<br>sheet mainly because of                                                                             | every                          | successive pass during cold rolling of a<br>at a temperature below the                                     | metal           | [2]                                 | C0<br>C02 | BL<br>2 |  |  |
|                                                                     | Ш.                                                                                   | The crystalline defect that can explain<br>metallic material is called<br>dimensional defect                                                                                           | ain bo<br>— —                  | oth ease of deformation and strength o<br>, which is a/an                                                  | fa              |                                     |           |         |  |  |
| Q.1(b)                                                              | Drav<br>I.<br>II.<br>III.                                                            | v the following directions and planes w<br>[101]<br>[122]<br>[301]                                                                                                                     | rithin<br>IV.<br>V.<br>VI.     | a cubic unit cell<br>(002)<br>(102)<br>(030)                                                               |                 | [3]                                 | C01       | 3       |  |  |
| Q.1(c)                                                              | Cho                                                                                  | ose the correct option:                                                                                                                                                                |                                |                                                                                                            |                 | [5]                                 | C01       | 3       |  |  |
|                                                                     | I.<br>A.<br>B.                                                                       | The suitable technique for determinin<br>microstructure of a solid is:<br>transmission electron microscopy,<br>scanning electron microscopy,                                           | ng loo<br>D.<br>E.             | cal composition of a phase in a given<br>photoelectron spectroscopy,<br>energy dispersive spectroscopy,    |                 |                                     |           |         |  |  |
|                                                                     | С.<br>П                                                                              | X-ray diffraction,<br>The ONLY two-dimensional crystalline                                                                                                                             | F.<br>defe                     | Impedance spectroscopy                                                                                     |                 |                                     |           |         |  |  |
|                                                                     | А.<br>В.<br>С.                                                                       | dislocation,<br>stacking fault,<br>Frenkel defect,                                                                                                                                     | D.<br>E.<br>F.                 | inclusion,<br>interstitial atom,<br>kink                                                                   |                 |                                     |           |         |  |  |
|                                                                     | 111.                                                                                 | The MOST IMPORTANT property for de                                                                                                                                                     | esigni                         | ing a bullet proof armour shield is:                                                                       |                 |                                     |           |         |  |  |
|                                                                     | А.<br>В.<br>С.                                                                       | transparency,<br>compressive strength,<br>thermal conductivity,                                                                                                                        | D.<br>E.<br>F.                 | hardness,<br>impact toughness,<br>fatigue strength                                                         |                 |                                     |           |         |  |  |
|                                                                     | IV.<br>A.<br>B.<br>C.                                                                | The MOST IMPORTANT property for ai<br>tensile toughness,<br>creep strength,<br>coercivity,                                                                                             | rcraft<br>D.<br>E.<br>F.       | t body fabrication is:<br>damping capacity,<br>high specific strength,<br>wear resistance                  |                 |                                     |           |         |  |  |
|                                                                     | V. The MOST IMPORTANT property for production of a sheet metal to be used for making |                                                                                                                                                                                        |                                |                                                                                                            |                 |                                     |           |         |  |  |
|                                                                     | А.<br>В.<br>С.                                                                       | impact strength,<br>oxidation resistance,<br>deep-drawability,                                                                                                                         | D.<br>E.<br>F.                 | fatigue strength,<br>torsional strength,<br>erosive wear                                                   |                 |                                     |           |         |  |  |
| Q.2(a)                                                              | Wri                                                                                  | te one-line short answers to the follow                                                                                                                                                | ing:                           |                                                                                                            |                 | [2]                                 | CO2       | 3       |  |  |

- I. Why does a grain boundary appear dark under an optical microscope?
- II. Why are Frenkel and Schottky defects irrelevant in metals?

- Q.2(b) Comment whether the variation is DIRECTLY or INVERSELY related between:
  - I. Thermal conductivity (of a metal) and thermal gradient.
  - II. Hardness and degree of cold work.
  - III. Viscosity (of a polymeric solid) and isothermal temperature.
  - IV. Tensile strength (of a metallic alloy) and average grain diameter.
  - V. Diffusion coefficient and isothermal temperature.
  - VI. Driving force and diffusion coefficient.
- Q.2(c) Write the correct 'word' to FILL IN THE BLANK:
  - I. Both edge and screw dislocations are line defects, but only \_\_\_\_\_\_ dislocations can cross slip.
  - II. Carbon as an interstitial solute has an option of choosing octahedral and tetrahedral void in BCC-iron but prefers \_\_\_\_\_\_ void as it is bigger in size or diameter.
  - III. Change in crystal lattice from BCC-titanium to HCP-titanium is called allotropic change but similar transformation of graphite by pressure to diamond (both elemental carbon) is called \_\_\_\_\_\_ change as the latter is irreversible.
  - IV. Diffusion coefficient of a solute atom through the internal grain boundary is likely to be \_\_\_\_\_\_ than that on the free surface of this crystal.
  - V. Both aluminium and diamond are elemental crystals with face centred cubic Bravais lattice, but \_\_\_\_\_\_\_ enjoys higher atomic packing density.
- Q.3(a) Calculate (i) the size of the critical radius and (ii) the number of atoms in the critical [2] CO3 3 nucleus when solid copper forms by homogeneous nucleation. [Given for Cu latent heat of fusion is 965 x  $10^6$  J/m<sup>3</sup>, surface energy is  $126 \times 10^{-3}$  J/m<sup>2</sup>, undercooling for homogeneous nucleation is 236 °C and lattice parameter is 0.4086 nm]
- Q.3(b) For a Fe-0.40 wt% C alloy at a temperature just below the eutectoid, determine the [3] CO2 3 following:
  - i. the proeutectoid phase that forms,
  - ii. the composition (names) and amount of each phase present at 728°C,
  - iii. the composition (names) and amount of each phase present at 726°C

[assume eutectoid composition is 0.8 wt.% C and eutectoid temperature is 727 °C]

- Q.3(c) Draw the partial, full or schematic phase diagram of a binary system showing: (i) [5] CO2 1 isomorphous (ii) eutectic and (iii) peritectic changes. Label the phase/phases above, below or between the liquidus and solidus lines.
- Q.4(a) Select the correct option:
  - I. Identify the correct sequence of the microstructures:



- a. (A) Grey cast iron, (B) Nodular cast iron, (C) White cast iron
- b. (A) Spheroidal Grey cast iron, (B) Grey cast iron, (C) Malleable cast iron
- c. (A) Spheroidal Gray cast iron, (B) Grey cast iron, (C) Austempered ductile iron
- d. (A) Nodular cast iron, (B) Gray cast iron, (C) White cast iron

[2] CO4 2

[5] CO2 3

[3] CO5 2

|        | II.                                                                                                                                                            |                                                                                                                                                                                                  |                   |                                                 |   |     |   |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|---|-----|---|--|--|--|--|--|--|
|        | a.                                                                                                                                                             | perfectly plastic,                                                                                                                                                                               | с.                | perfectly elastic,                              |   |     |   |  |  |  |  |  |  |
|        | b.                                                                                                                                                             | rigid plastic,                                                                                                                                                                                   | d.                | none of the above                               |   |     |   |  |  |  |  |  |  |
|        | III.                                                                                                                                                           | The deformation mechanism applicable only to polymeric and no other engineering solid is                                                                                                         |                   |                                                 |   |     |   |  |  |  |  |  |  |
|        | a.<br>b.                                                                                                                                                       | Elastic deformation<br>Plastic deformation                                                                                                                                                       | c.<br>d.          | Shear deformation<br>Viscoelastic deformation   |   |     |   |  |  |  |  |  |  |
|        | IV.                                                                                                                                                            | Tendency of cracking during quenching and hardening of an alloy steel component can be reduced by:                                                                                               |                   |                                                 |   |     |   |  |  |  |  |  |  |
|        | a.<br>b.                                                                                                                                                       | austempering<br>tempering                                                                                                                                                                        | c.<br>d.          | nodularizing<br>martempering                    |   |     |   |  |  |  |  |  |  |
| Q.4(b) | Answer very briefly:                                                                                                                                           |                                                                                                                                                                                                  |                   |                                                 |   |     |   |  |  |  |  |  |  |
|        | .<br>  .<br>   .                                                                                                                                               | Explain a glass-ceramic.<br>Elucidate the most important propert<br>Demonstrate why does conductivity o                                                                                          | y of a<br>f Si ir | a refractory.<br>nprove by doping with P or As. |   |     |   |  |  |  |  |  |  |
| Q.4(c) | Write differences between (in one line only):                                                                                                                  |                                                                                                                                                                                                  |                   |                                                 |   |     | 4 |  |  |  |  |  |  |
|        | .<br>  .  <br>  .  <br> V. /<br>V.                                                                                                                             | Thermosetting and thermoplastic polym<br>Nodularizing and Malleablizing<br>Primary and secondary hardening of ste<br>Annealing and normalizing of steel<br>Fatigue and tensile testing of solids | ners<br>Pel       |                                                 |   |     |   |  |  |  |  |  |  |
| Q.5(a) | Define                                                                                                                                                         |                                                                                                                                                                                                  | [2]               | CO4                                             | 1 |     |   |  |  |  |  |  |  |
| Q.5(b) | Answer very briefly:<br>I. Explain creep.<br>II. Elucidate why does creep happens more at high temperatures.<br>III. Describe the stages of creep deformation. |                                                                                                                                                                                                  |                   |                                                 |   | CO5 | 3 |  |  |  |  |  |  |
| Q.5(c) | I. Answer very briefly: What does resistivity depend on? How does it vary with temperature?                                                                    |                                                                                                                                                                                                  |                   |                                                 |   |     | 4 |  |  |  |  |  |  |
|        | II.                                                                                                                                                            | Differentiate between:<br>(A) Soft and hard magnetism<br>(B) X-ray diffraction and X-ray spectre                                                                                                 | oscop             | у                                               |   |     |   |  |  |  |  |  |  |

## :::::24/11/2022::::E