BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)						
CLASS: BRANCH	M. TECH/PRE-PHD : MECHANICAL				SEMESTER : I SESSION : MO/2	022
TIME:	SUBJECT: 3:00 Hours	ME521 COMPUTATIO	NAL METHODS IN EN	GINEERING	FULL MARKS: 5	0
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 						
Q.1(a)	Solve the following equatio x + y +z 2x -3y +4z	= 9 = 13	nethod :		[CO1,BT 3]	[5]
Q.1(b)	3x+ 4y +5z = 40 Find the eigen value and corresponding eigen vector (using inverse power matrix method only) for [5] matrix					
	$A = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$	2 4 with v ⁽	$^{0)} = [-1, 1]^{T}$.		[CO1,BT 6]	
Q.2(a)	Use Secant method to find	the approximate value	e of $\sqrt{12}$, correct u	p to three deci		[5]
Q.2(b)	[CO2,BT3] Design a bivariate interpolating polynomial by Lagrange's method using following table: [5]					
	x0y0f(x, y)1Also, calculate the value	0 1 1 0 2 3 ue of f (1.5, 0.75).	1 1 5	2 0 5 [CC	2 1 10 2,BT6]	
Q.3(a)	Find the value of $\frac{dy}{dx}$ at x=4 from the following data by using Lagrange interpolation formula : [[CO3,BT3]					
Q.3(b)	x0f(x)0Using Romberg's integration	2 8	5 125	1		[5]
$\int_{0}^{1} \frac{dx}{1+x^{2}}$ correct to four decimal places by taking h=0.5,0.25 and 0.125. [CO3,BT4]						
Q.4(a)	Apply Adams- Bashforth Moulton method to find y(0.4) from following informations : $f(x,y) = \frac{dy}{dx} = 0.5 xy$					[5]
Q.4(b)	y(0)=1, y(0.1)=1.01, y(0.2)=1.022 & $y(0.3)=1.023$. [CO4,BT3] Find the value of $y(0.1)$ & $z(0.1)$ by applying Runge - Kutta Method of fourth order from the [! system of equations :					[5]
	$\frac{dy}{dx} = x+z$, $\frac{dz}{dx} = x-y^2$ if y(0)=2 and z(0)=1 is giv	en,		[CO4,BT5]	

Q.5(a) Solve numerically, 4 $u_{xx} = u_{tt}$ with the boundary conditions u(0, t) = 0, u(4,t) = 0 and the initial [5] conditions $u_t(x, 0) = 0$ & u(x, 0) = x (4-x), taking h = 1 (for 4 time steps) [C05,BT6]

$$\frac{\partial^2 \mathbf{u}}{\partial x^2} \cdot 2 \frac{\partial u}{\partial t} = 0$$
Given :
[5]

u(0,t) = 0, u(4,t) = 0 and u(x,0) = x (4-x). Assuming h = 1, find the values of u up to t=5. [CO5,BT5]

:::::23/11/2022::::E