BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: B.TECH BRANCH: ME

SEMESTER: V SESSION: MO/2022

SUBJECT: ME331 THERMO FLUID ENGINEERING

TIME: 2 HOURS

FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1	(a)	$(\vec{V}.\nabla)\vec{V}$ Expand in rectangular coordinates by direct substitution of the velocity vector to obtain the convective acceleration of a fluid particle.	[2]	CO CO2	BL 2
Q1	(b)		[3]	CO1	1
Q2	(a)	In steady-state flow, at downstream the density is 1 kg/m^3 , the velocity is 1000 m/sec, and the area is 0.1 m ² . Upstream, the velocity is 1500 m/sec, and the area is 0.25 m ² . Calculate the density at upstream?	[2]	C05	3
Q2	(b)	A tank of 0.4 m^3 volume contains compressed air. A valve is opened and air escapes with a velocity of 250 m/s through an opening of 100 mm ² area. Air temperature passing through the opening is -20°C and the absolute pressure is 300 kPa. Find the rate of change of density of the air in the tank at this moment.	[3]	CO3	3
Q3	(a)	The stream function of a flow field is $\psi = Ax^2y - By^3$, where A = 1 m ⁻¹ s ⁻¹ , B = 0.33 m ⁻¹ s ⁻¹ . Find an expression for the velocity potential.	[2]	CO5	3
Q3	(b)		[3]	CO5	3
Q4	(a)	A flow field is represented by the stream function $\psi = x^5 - 10x^3y^2 + 5xy^4$. Check whether the flow is rotational or irrotational.	[2]	CO5	2
Q4	(b)		[3]	C01	3
Q5	(a)	Assume the liquid film over horizontal plane and the flow is driven by a constant shear stress on the top surface i.e at $y = h$, $\tau_{yx} = C$. Assume that the liquid film is thin enough and flat and that the flow is fully developed with zero net flow rate (flow rate Q = 0). Determine the velocity profile u(y).	[2]	CO2	3
Q5	(b)	Determine the pressure gradient dp/dx	[3]	CO2	3

:::::: 01/10/2022 :::::M