BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)	
CLASS: BRANCH		SEMESTER : V SESSION : MO/2022
TIME:	SUBJECT: ME315 HEAT & MASS TRANSFE 3:00 Hours	R FULL MARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
Q.1(a) Q.1(b)	Explain the physical significance of thermal conductivity of the mater A solid steel ball 5 cm in diameter and initially at 450°C is quenche 90°C with convection coefficient of 115 W/m ² K. Determine the ti temperature of 150°C. Take thermo-physical properties as: C = 420 J/kgK; ρ = 8000 kg/m ³ ; k = 46 W/mK	d in a controlled environment at [3]
Q.1(c)	A steel pipe line ($k=50W/m/K$) of I.D. 100mm and O.D. 110 mm is a insulation each having a thickness of 50 mm. The thermal conductivi is 0.06 W/mK and that of the second is 0.12 W/mK. Calculate the los pipe and the interface temperature between the two layers of insulations inside tube surface is 250 °C and that of the outside surface of the insulation is the interface of the insulation inside tube surface is 250 °C and that of the outside surface of the insulation is the interface of the interface	ty of the first insulation material is of heat per meter length of the tion when the temperature of the
Q.2(a)	A turbine blade 6cm long and having a cross sectional area 4.65 cm ² stainless steel ($k = 23.3$ W/mK). The temperature at the root is 500° gas at T _w =870°C. The heat transfer coefficient between the blade Determine the temperature distribution (T-T _w) expression and rate blade. Assume tip of the blade to be insulated.	°C. The blade is exposed to a hot surface and gas is 442 W/m²K.
Q.2(b)	A pipe carrying steam having an outside diameter of 20 cm runs in a la a temperature of 30°C. The pipe surface temperature is 400°C. surroundings per metre length of pipe due to thermal radiation. The 0.8. What would be the loss of heat due to radiation if the pipe is e conduit of emissivity 0.91?	Calculate the loss of heat to emissivity of the pipe surface is
Q.3(a)	Define and explain the dimensionless quantities: (i) Nusselt number (ii) Reynolds number (iii) Prandtl number (iv) Grashof's number (v) skin friction coefficient	[5]
Q.3(b)	Air, at a pressure of 8 kN/m ² and a temperature at 250°C, flows ove plate at a velocity of 8 m/s. If the plate is to be maintained at a terrate of heat to be removed continuously from both sides of the plate.	emperature of 78°C, estimate the
Q.4(a) Q.4(b)	Draw and explain the various regimes of pool boiling of water. Consider a cubical block 10 cm x 10 cm in size and suspended in stiblock are maintained at 160°C. Determine total heat loss from the blo air at mean film temperature of 90°C are: $v = 22.1 \times 10^6 \text{ m}^2/\text{s}$; k = 0.03	ck. Thermo-physical properties of
Q.5(a) Q.5(b) Q.5(c)	Define Fick's Law of Diffusion. Explain fouling and effect of fouling resistance on overall heat transfe A counter flow concentric tube heat exchanger is used to cool engine	

Q.5(c) A counter flow concentric tube heat exchanger is used to cool engine oil (c = 2130 J/kg K) from 160°C [5] to 60°C with water, available at 25°C, as cooling medium. The flow rate of cooling water through the inner tube of 0.5 m diameter is 2 kg/s while the flow rate of oil through the outer annulus O.D. = 0.7 m is also 2kg/s. If the value of the overall heat transfer coefficient is 250 W/m²K, how long the heat exchanger be to meet its cooling requirement?

:::::24/11/2022:::::M