BIRLA INSTITUTE OF TECHNOLOGY, MESRA,	RANCHI
(MID SEMESTER EXAMINATION)	

CLASS: BTECH BRANCH: MECHANICAL

SUBJECT: ME303 MECHANICAL VIBRATIONS

TIME: 2 HOURS

FULL MARKS: 25

CO

BL

SESSION: MO/2022

SEMESTER: V

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a) Find the natural frequency of the pendulum shown in Figure when the [5] CO1 Evaluate mass of the connecting bar (m) is not negligible compared to the mass of the pendulum bob (M).

rod of mass m and length *l* Bob of mass M

	What is logarithmic decrement?	[2]	CO1	Understand
	A vibrating system consisting of a mass of 2.5 kg and a spring of stiffness 20 N/cm is viscously damped such that the ratio of any two consecutive amplitudes is 0.02. Determine the damping factor ζ .	[3]	CO1	Evaluate
Q3 (a)	A spring-mass-dashpot system is excited by a harmonic force. At resonance, the amplitude is measured to be 0.6 cm. At 0.80 resonant frequency, the amplitude is measured to be 0.5 cm. Determine the damping factor ζ of the system.	[5]	C01	Evaluate
	What are normal modes of vibration in a two degree of freedom system?	[2]	CO2	Remember
	What do you understand by mode shapes?	[3]	CO2	Understand
Q5 (a)	Determine the natural frequencies of the system shown in Figure. $k \xrightarrow{x_1} k \xrightarrow{x_2} 2k$	[5]	CO3	Analyse

:::::: 27/09/2022 M ::::::

т

0 0

2*m*

0 0