BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:		SEMESTER : III SESSION : MO/2022		
TIME:	SUBJECT: ME289 THERMAL AND FLUID ENGINEERING 3:00 Hours FU	FULL MARKS: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a) Q.1(b) Q.1(c)	Define system and surroundings. Describe the quasi-static process with a neat sketch. Derive an expression for the $p \cdot dV$ work for a process with $p \cdot V^n = C$. What would be a work done in case of a free expansion of the gas?	[2] [3] :he [5]	CO 1 1 1	BL 1 2 3
Q.2(a) Q.2(b) Q.2(c)	Define enthalpy and write an expression for the same. Examine whether energy is a property of the system or not. In a gas turbine, the gas enters at the rate of 5 kg/s with a velocity of 50 m/s are enthalpy of 900 kJ/kg and leaves the turbine with a velocity of 150 m/s and enthalpy 400 kJ/kg. The loss of heat from the gases to the surroundings is 25 kJ/kg. Assume for $R = 0.285$ kJ/kg K and $C_p = 1.004$ kJ/kg K and the inlet conditions to be at 100 kPa a 27°C. Determine the power output of the turbine and the diameter of the inlet pipe.	of gas	1 1 1	1 4 5
Q.3(a)	Explain with neat sketches, the different modes of heat transfer along with	the [5]	2	2
Q.3(b)	expressions (derivation not required). Water flows at 50°C inside a 2.5-cm-inside-diameter tube such that $h_i = 3500 \text{ W/m}^2 \cdot$ The tube has a wall thickness of 0.8 mm with a thermal conductivity of 16 W/m ² · °C. To outside of the tube loses heat by free convection with $h_o = 7.6 \text{ W/m}^2 \cdot °C$. Calculate is overall heat transfer coefficient and heat loss per unit length to surrounding air at 20°C	he the	2	5
Q.4(a)	Describe the following: 1. The continuum concept of a fluid 2. The Lagrangian description of fluid flow 3. The Eulerian description of fluid flow	[6]	4	2
Q.4(b)	The velocity vector in a fluid flow is given as $\vec{v} = 4x^3\hat{\imath} - 10x^2y\hat{\jmath} + 2t\hat{k}$. Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time $t = 1$.	the [4]	4	5
Q.5(a)	Derive Bernoulli's equation from Euler's equation. Also, state the assumptions may while deriving Bernoulli's equation.	de [5]	5	5
Q.5(b)	The water is flowing through a pipe having diameters of 20 cm and 10 cm at section and 2, respectively. The rate of flow through the pipe is 35 liters/s. Section 1 is 6 above the datum and section 2 is 4 cm above the datum. If the pressure at section 1 39.24 N/cm ² , find the intensity of pressure at section 2.	m	5	5

:::::25/11/2022::::E