BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BTECH SEMESTER : III
BRANCH: MECHANICAL / PRODUCTION SESSION : MO/2022

SUBJECT: ME205 STRENGTH OF MATERIALS

TIME: 3:00 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

- Q1. The strain components at a given point are $\epsilon_x = -533 \times 10^{-6}$, $\epsilon_y = 67 \times 10^{-6}$, and $\gamma_{xy} = -626 \times 10^{-6}$. If [10] E=200 GPa and $\nu=0.30$, find the stress components whose normal is at 45° from x axis.
- Q2. An I section girder, 200 mm wide by 300 mm depth flange and web of thickness is 20 mm is used as simply supported beam for a span of 7 m. The girder carries a distributed load of 5 kN /m and a concentrated load of 20 kN at mid-span.

 Determine the
 - (i). The second moment of area of the cross-section of the girder
 - (ii). The maximum stress set up.
- Q3. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig. 2. [10]

 Determine the equations of the elastic curve between each change of load point and the maximum deflection in the beam.

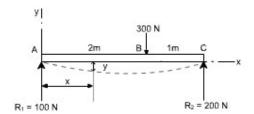


Fig. 2

- a. Derive the complete torsion equation for circular shaft.
- b. The solid shaft is fixed to the support at C and subjected to the torsional loadings shown. Determine the shear stress at points A and B and sketch the shear stress on volume elements located at these points.

[10]

[10]

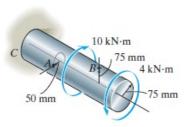


Fig. 3

Q5. Calculate the minimum wall thickness for a thin-walled cylindrical pressure vessel that is to carry a gas at pressure of 10 MPa. The diameter of the vessel is 0.6 m, and the stress is limited to 85 MPa.

:::::23/11/2022::::E