BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)			
CLASS: BRANCH	BTECH : MECH	SEMESTER : III SESSION : MO/2022	
TIME:	SUBJECT: ME201 THERMODYNAMICS 3:00 Hours	FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a)		[2]]
Q.1(b)	A 1 m^3 rigid tank has air at 100 kPa, 300 K is connected by a valve to another tank of at 250 kPa, 400 K. The valve is opened and the two tanks come to a uniform]
Q.1(c)	Determine the final pressure? A constant pressure piston/cylinder assembly contains 0.2 kg of steam at 400 kPa, 22 so that the volume reduces to half of the original volume. Estimate the work done in]
Q.2(a) Q.2(b)	State the first law of thermodynamics applied to (i) a process and (ii) a cycle One kg of air at 7 bar, 90 °C undergoes a polytropic process which is represented by till the pressure falls to 1.4 bar. Determine (i) the final temperature, (ii) the final the heat transferred.		
Q.2(c)	Steam enters a nozzle with a negligible velocity at 3 MPa, 320 $^{\circ}$ C and leaves the r with a velocity of 550 m/s. The rate of flow of steam is 0.5 kg/s. Determine the co at the nozzle exit and nozzle exit area.]
Q.3(a) Q.3(b) Q.3(c)	State the difference between refrigerator and heat pump. State and explain Carnot theorem. An ice plant working on revered Carnot cycle refrigerator produces 20 tonnes of ice is formed from the water at 0 °C and is maintained at 0 °C. The heat is rejected to t 27 °C. The heat pump used to run the ice plant is coupled to a Carnot engine wh from a source which is maintained 227 °C and rejects heat to the atmosphere at 27 heat supplied to the engine. (Take the enthalpy of fusion of ice is 334.5 kJ/kg)	he atmosphere at nich absorbs heat]
Q.4(a) Q.4(b) Q.4(c)	Show that entropy is the property of a system. Explain entropy principle. Estimate the change in entropy of the universe as a result of following processes (600 gm mass and Cp of 150 J/K at 100 °C is placed in a lake at 8 °C, (ii) Two such I °C and 0 °C are joined together.]
Q.5(a) Q.5(b)	Derive an expression for the ideal efficiency of an air standard diesel cycle. An engine working on Otto cycle has a volume 0.5 m ³ , pressure 1 bar and tempera commencement compression stroke. At the end of compression stroke the pressure added during constant volume process is 200 kJ. Determine the (a) percentage clear air standard efficiency and (c) mean effective pressure.	is 10 bar. Heat is	

:::::25/11/2022::::E