BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	IMSC/MSC MATHEMATICS	SEMESTER : IX / III SESSION : MO/2022
TIME:	SUBJECT: MA507 COMPUTATIONAL FLUID DYNAMIC 3:00 Hours	CS FULL MARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
- ()	Define and explain Dirichlet and Neumann boundary conditions with a suit. Determine the mathematical character of the equations given by	able physical problem. [5] [5]

 $B^2 \partial u / \partial x - \partial v / \partial y = 0$ $\partial v / \partial x - \partial u / \partial y = 0$

Q.2(a) Derive the 2^{nd} order central difference approximation of $\partial f/\partial x$ using Taylor series expansion.

Q.2(b) The finite difference scheme of the linear convection equation
$$\partial u/\partial t + c \partial u/\partial x = 0$$
 is given by, [5]

[5]

$$\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=\frac{-c}{2\Delta x}(u_{j+1}^{n}-u_{j-1}^{n})$$

Perform the Von Neumann stability analysis and comment on the stability of the scheme.

- What do you understand by explicit and implicit schemes? Explain with suitable examples. Q.3(a) [5]
- Q.3(b) Write down the modified Runge-Kutta method of order four to solve the inviscid Burgers equation [5] $\partial u / \partial t + u \partial u / \partial x = 0.$
- Q.4(a) Derive the finite volume state update formula for Euler equations $\partial U/\partial t + \partial f/\partial x + \partial g/\partial y = 0$, where [5] U=vector of conserved variables, f and g are flux vectors in x and y directions respectively. Q.4(b) Discuss briefly on global and local time steps. [5]
- Derive the pressure Poisson equation in primitive variables for solving incompressible flow. [5] [5] Q.5(a) Q.5(b) What do you understand by staggered grid? Explain it for solving incompressible Navier-Stokes equations.

:::::29/11/2022::::E