BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	MSC & IMSC	SEMESTER : III & IX
BRANCH	: MATHEMATICS/ MATHEMATICS AND COMPUTING	SESSION : MO/2022
TIME:	SUBJECT: MA502 NUMBER THEORY 3:00 Hours	FULL MARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
Q.1(a)	State and prove fundamental theorem of arithmetic.	[5]
Q.1(b)	Obtain integers x and y satisfying $d = (178523, 4578) = 178523x + 4578$	8y [5]
Q.2(a)	Find all the primitive roots of the prime $p = 17$.	[5]
Q.2(b)	State and prove Wilson's Theorem.	[5]
Q.3(a)	Find the fundamental solution of $x^2 - 30y^2 = 1$.	[5]
Q.3(b)	Solve the linear Diophantine equation $56x + 72y = 40$.	[5]
Q.4(a)	Determine whether -104 is a quadratic residue or nonresidue of the prime 997.	[5]
Q.4(b)	Prove that $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.	[5]

- Q.5(a)Explain Public key cryptosystem with the help of an example.[5]Q.5(b)Alice encrypts the plaintext message P 234 using the RSA cryptosystem with Bob's public key[5]
- $(n, e) = (2479, 37 \times 67, 169)$. What is the resulting ciphertext that would be sent to Bob? Find the corresponding decryption key **d**.

:::::23/11/2022::::E