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Q.1(a) Let 𝐶[𝑎, 𝑏] denote the set of all real-valued continuous functions on [𝑎, 𝑏]. For 𝑥, 𝑦𝜖𝐶[𝑎, 𝑏], define 

𝑑(𝑥, 𝑦) =  ∫ ∣ 𝑥(𝑡) − 𝑦(𝑡) ∣ 𝑑𝑡
௕

௔
 . 

Explain that ‘d’ is a metric on 𝐶[𝑎, 𝑏] .       BT2, CO3 

[5] 

Q.1(b) Prove that if a closed unit ball becomes compact in a normed linear space X then X is finite-
dimensional.                                                 BT2, CO3                                            

[5] 

   
Q.2(a) Define a bounded linear operator over a normed linear space and give an example of a bounded linear 

operator.                              BT1, CO3 
[2] 

Q.2(b) Prove that a linear operator defined over a finite-dimensional normed linear space is bounded.  BT2, 
CO3 

[3] 

Q.2(c) If X is a non-trivial normed linear space then show that the first dual of X is nonempty. BT3, CO3 [5] 
   

Q.3(a) If X and Y are two Banach spaces and T:X→Y is a closed linear operator, prove that T is bounded. BT2, 
CO3 

[5] 

Q.3(b) Is the normed space X, of all polynomials with norm defined by ||x||= max |αj| (α0, α1, …., the 
coefficients of x)  complete? Explain    BT2, CO1 

[5] 

   
Q.4(a) Show that every inner product space is a normed linear space. BT3, CO3 [2] 
Q.4(b) Let X be an inner product space. Suppose xn→x and yn→y.  Where will {<xn,yn>} converge? Interpret 

the result. BT2, CO3 
[3] 

Q.4(c) State Riesz representation theorem of a bounded linear functional. Prove that every bounded linear 
functional f on l2 can be represented by f(x)=∑xi𝑦ത௜  for  x=(xi)∊l2 for specific y=(yi) BT3, CO3 

[5] 

   
Q.5(a) Define Hilbert-adjoint and self-adjoint operators..   BT1, CO2 [2] 
Q.5(b) Let T: l2→l2 be defined by T(ℰ1,ℰ2,ℰ3,…….)=(0,ℰ1,ℰ2,ℰ3,…..). Find the adjoint of T. BT2,CO2 [3] 
Q.5(c)  Prove that a bounded linear operator T on a complex Hilbert space H is unitary if and only if T is 

isometric and surjective. BT2, CO2 
[5] 
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