BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH		ESTER : III/IX ION : MO/2022	2
TIME:	SUBJECT: MA501 FUNCTIONAL AANALYSIS 3:00 Hours FULL	_ MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a)	Let $C[a, b]$ denote the set of all real-valued continuous functions on $[a, b]$. For $x, y \in C[a, b]$ $d(x, y) = \int_{a}^{b} x(t) - y(t) dt$.	a, b], define	[5]
Q.1(b)	Explain that 'd' is a metric on $C[a, b]$. BT2, CO3 Prove that if a closed unit ball becomes compact in a normed linear space X then dimensional. BT2, CO3	n X is finite-	[5]
Q.2(a)	Define a bounded linear operator over a normed linear space and give an example of a bo	ounded linear	[2]
Q.2(b)	operator. BT1, CO3 Prove that a linear operator defined over a finite-dimensional normed linear space is bo CO3	unded. BT2,	[3]
Q.2(c)	If X is a non-trivial normed linear space then show that the first dual of X is nonempty. B	тз, соз	[5]
Q.3(a)	If X and Y are two Banach spaces and T:X \rightarrow Y is a closed linear operator, prove that T is be CO3	ounded. BT2,	[5]
Q.3(b)	Is the normed space X, of all polynomials with norm defined by $ x = \max \alpha_j (\alpha_0 \text{ coefficients of } x)$ complete? Explain BT2, CO1	, α_1 ,, the	[5]
Q.4(a) Q.4(b)	Show that every inner product space is a normed linear space. BT3, CO3 Let X be an inner product space. Suppose $x_n \rightarrow x$ and $y_n \rightarrow y$. Where will { <x<sub>n,y_n>} conver the result. BT2, CO3</x<sub>	ge? Interpret	[2] [3]
Q.4(c)	State Riesz representation theorem of a bounded linear functional. Prove that every bo functional f on l_2 can be represented by $f(x)=\sum x_i \overline{y}_i$ for $x=(x_i)\in l_2$ for specific $y=(y_i)$ BT3, CO		[5]
Q.5(a) Q.5(b) Q.5(c)	Define Hilbert-adjoint and self-adjoint operators BT1, CO2 Let T: $l_2 \rightarrow l_2$ be defined by $T(\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \dots,)=(0, \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \dots,)$. Find the adjoint of T. BT2,CO2 Prove that a bounded linear operator T on a complex Hilbert space H is unitary if and		[2] [3] [5]

Q.5(c) Prove that a bounded linear operator T on a complex Hilbert space H is unitary if and only if T is [5] isometric and surjective. BT2, CO2

:::::21/11/2022::::E