

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	BTECH IT//CHEMICAL/CP&P	ina honj	SEMESTER : VII SESSION : MO/2022
TIME:	SUBJECT: MA430 DISCRETE MATHE/ 3:00 Hours	MATICAL STRUCTURES	FULL MARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(b)	Let $A = \{1,2,3\}$ and the relation $R = \{(1,1), (2,2), (3,3), (1,3), (1,2)\}$. Investigate the relation [2] for reflexive, symmetric or transitive. A computer company receives 40 applications for a job of programmers. Among them 25 knew JAVA, [3] 28 knew ORACLE, and 7 did not know any of the languages. How many of them knew both the languages? BT3 CO1		
Q.1(c)	Find how many different arrangements can be made w How many integer solutions are there in $x + y - x \ge 1$, $y \ge 2$, $z \ge 3$, $w \ge 0$?	z + w - 29, subject to	
Q.2(a) Q.2(b) Q.2(c)	Solve the recurrence relation $a_n - 5a_{n-1} + 6a_n$ characteristic equation method. BT3 Find the particular solution of the recurrence relation Using generating function method, solve the recurrent initial condition $a_0 = 2, a_1 = 4$. BT3 C	CO4 $a_n - 5a_{n-1} + 6a_{n-2} = 1.$ nce relation $a_n - 4a_{n-1} + 3a_{n-2} = 1.$	BT1 CO4 [3]
Q.3(a)	Show that $G = \{e, a, b, c\}$ with the following composite e = a + b + c a + a + c + b b + b + c + a c + c + b + a c + c + b + a b + b + c + a c + c + b + a c + c + b + a b + c + a c + b + a + b + c b + b + c + a b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c b + b + c + a + b + c	tion table is a Group. BT3 CO4	[5]
Q.3(b) Q.3(c)	Find all the subgroups of the above group. State Lagrange's theorem for subgroups.	BT1 CO4 BT1 CO4	[3] [2]
Q.4(a) Q.4(b)	Define Chromatic number of a graph.	BT1 CO5	[2] [3]
	Compute the Chromatic number of the above graph.	ВТЗ С	05

- Q.5(a) A simple graph G has 10 vertices and 21 edges. Compute the total number of edges in the [2] compliment graph G. BT3 CO5
- Q.5(b) Let G be a graph with n vertices which is isomorphic to its compliment. Show that either $4 \mid n$ [3] or $5 \mid n$. BT3 CO5

Show that G_1 and G_2 are isomorphic graphs. Show that G_2 and G_3 are not isomorphic graphs.

BT3 CO5

:::::28/11/2022:::::M

BT3 CO5