BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO2022)

CI ASS.	(END SEMESTER EXAMINATION MO2022)		
CLASS: BRANCH	IMSC : MATHEMATICS & COMPUTING	SEMESTER : VII SESSION : MO/2022	
TIME:	SUBJECT: MA402 ADVANCED COMPLEX ANALYSIS 03 Hours	FULL MARKS: 50	
2. Atter 3. The r	CTIONS: Juestion paper contains 5 questions each of 10 marks and total 50 marks. Apt all questions. Inissing data, if any, may be assumed suitably. Ins/Data handbook/Graph paper etc., if applicable, will be supplied to the car	ıdidates	
Q.1(a)	Outline how the stereographic projection is used to make the notion of point at infinity tangible in [the complex plane. (CO1, BT2)		
Q.1(b)	Applying Cauchy - Goursat theorem for multiple connected domain, comp integral $I = \oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where <i>C</i> is the circle $ z = 3$.		[3]
Q.1(c)	Using Cauchy's Integral formula for the n^{th} derivative, derive that: $\left f^{n}(z_{0})\right \leq \frac{n!M}{\rho^{n}}$		[5]
	where f be analytic within and on the circle ${\it C}$ defined b	by $ z-z_0 = ho$ and	
	$ f(z) \le M$ (bounded) at each point on C . Hence, using the above obtained that if f becomes analytic and bounded in the entire finite plane, then it (CO1, BT3)		
Q.2(a)	If a bilinear transformation $w = T(z)$ has exactly two fixed points z_1 and z_2 , then for some non - zero constant k , show that they satisfy the equation		[5]
	$\frac{w - z_1}{w - z_2} = k \frac{z - z_1}{z - z_2}$	(CO2, BT2)	
Q.2(b)	Develop the Laurent series expansions of the function $f(z) = \frac{1}{(z-1)(z)}$ regions:	$\frac{1}{-2}$ in the following	[5]
	i. $1 < z < 2$	(CO2 DT2)	
	ii. $0 < z - 2 < 1$	(CO2, BT3)	
Q.3(a)	If $z = z_0$ is some singularity of the given function $f(z)$. Then, under what conditions it is called to be non - isolated one. Is it possible to expand the function $f(z)$ as Laurent series if z_0 is a non - isolated singularity? Explain with proper reasoning. (CO2, BT2)		[2]
			[3]
Q.3(b)	Describe how the function $f(z) = z^{\overline{2}}$ is a multivalued function, mentioni branch point and branch cut for it.		
Q.3(c)	Determine the residues at each of the singularities of the function $f(z) = -$	(CO2, BT3) $\frac{z^2}{z^2 + 3z + 2)^2}$. Hence,	[5]
	using these residues, evaluate the integral $\oint_C f(z) dz$, when <i>C</i> is an ellipse $\frac{x^2}{16}$	$\frac{y^2}{5} + \frac{y^2}{25} = 1.$ (CO3, BT3)	

ΡΤΟ

(CO3, BT3)

Q.4(a) If a function f(z) is meromorphic inside a simple closed contour C and f(z) is analytic and has no zeros on C, then prove that:

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = N_z - N_p \tag{*}$$

where N_z is the number of zeros and N_p is the number of poles inside C (a pole or zero of order m must be counted m times).

In particular, if $f(z) = \frac{(z-2)^4}{z^3(z-1)^4}$, then using expression (*), obtain the value of integral $\oint_C \frac{f'(z)}{f(z)} dz$, where *C* is the circle |z| = 3. Also, if possible, determine the winding number of the transformation w = f(z) from the *z*-plane to *w*-plane.

Q.4(b) State Rouche's theorem. Hence, using it, find the number of the roots of the polynomial

$$P(z) = z^9 - 2z^6 + z^2 - 8z - 2z^6 + z^2 - 8z^6 + z^2 + z^2 + 2z^6 + z^2 + z^2 + z^6 + z^6$$

that lie inside the circle |z| = 1.

Q.5(a) Define Weierstrass primary factor of order $E_p(z)$ of order p. Demonstrate how the Weierstrass [5] primary factor $E_p(z)$ becomes convergent for large values of p.

Q.5(b) The following information about an entire function f(z) is given

- i) the only zeros of the function are at $z = n^2$, where $n \in N$ (set of natural numbers)
- ii) genus of the canonical product associated with the function is one, whereas the genus of the function itself is two.
- With the above information, is it possible to construct the entire function in Weierstrass Factorized form. If so, then find the suitable form (s) of f(z).

, ,

(CO3, BT3)

:::::25/11/2022::::E

[5]

(CO2, BT2) [5]

[5]

(CO2, BT2)

(CO3, BT3)