
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)			
CLASS: BRANCH	IMSc. I: MATHS & COMPUTING	SEMESTER : V SESSION : MO/20	22
SUBJECT: MA305 GRAPH THEORY			
TIME:	3:00 Hours	FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
	Let G_1 and G_2 be two isomorphic graphs. Show that the number of vertices and the	BT1 CO1 e number of edges CO1	[2] [3] [5]
	ν_3 ν_7		
	Examine whether these two graphs are not isomorphic or not.	BT4 CO1	
Q.2(a) Q.2(b)	Show that in a connected Euler graph every vertex has even degree. Which of the following graphs is a Euler graph? (i) Any k-regular graph where k is an even number (ii) A complete graph on 90 vertices	BT3 CO4	[2] [3]
Q.2(c)	(iii) The complement of a cycle on 25 vertices Let G be a graph with 20 vertices having the property that for any two distinct verti we have $deg(x) + deg(y) \ge 19$. Show that G is a connected graph.	BT4 CO4 ces x, y of G , BT3 CO4	[5]
Q.3(a)	Let G be a simple, connected and planar graph with $v \ge 3$ vertices and $e \le 3v - 6$. CO4	edges. Show that BT3	[2]
Q.3(b)	Let G be a simple, connected and planar graph with $v \ge 3$ vertices, e edges and that $e \le 2v - 4$.	no triangles. Show BT3 CO4	3]
Q.3(c)	Prove that K_5 and $K_{3,3}$ are not planar graphs.	BT5 CO4	[5]
	a ava . C.		
Q.4(a) Q.4(b)	Define Chromatic number and Chromatic index of a graph.	BT1 CO3	[2] [3]
	Compute the Chromatic number and Chromatic index of the above graph.	BT3	

CO3 Q.4(c) Compute the Chromatic polynomial of $K_4 - e$, where e is any edge of K_4 . [5] Show that there is no graph with Chromatic polynomial $k^5 - 4k^4 + 8k^3 - 4k^2 + k$. BT3 CO3

ΡΤΟ

- Q.5(a) Suppose a tree has even number of edges. Show that at least one vertex must have even degree. [2] BT3 CO2
- Q.5(b) Draw two non-isomorphic trees with same degree sequence. What is the smallest **n** for existence of [3] BT4 CO2

Use Prim's Algorithm to find a minimum spanning tree of the above graph. BT3 CO5

:::::23/11/2022:::::M

[5]