BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	IMSC MATHS & COMPUTING	SEMESTER: III SESSION: MO/2022		
	SUBJECT: MA208 INTEGRAL TRANSFORM AND APPLICATIONS			
TIME:	3 HOURS	FULL	MARKS:	50
 INSTRUCTIONS: The total marks of the questions are 50. Candidates attempt for all 50 marks. Before attempting the question paper, be sure that you have got the correct question paper. The missing data, if any, may be assumed suitably. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
			СО	BL
	d the Fourier Series of $f(x) = \sin(mx)$, $-\pi < x < \pi$, ere <i>m</i> is not equal to zero and not an integer.	[5]	CO-1	BT-1
Q1 (b) Fine	d the Fourier Series representation of $x = x - x^2$, $-1 < x < 1$	[5]	CO-1	BT-1
Q2 (a) Find	d the Laplace Transform of the function: $f(t) = te^{-2t} \cos 3t$	[2]	CO- 1,2	BT-1
Q2 (b) Usi	ng convolution theorem evaluate : $L^{-1}\left\{\frac{1}{(s^2+9)(s+2)}\right\}$	[3]	CÓ- 1,2	BT-5
	we the following initial value problem using Laplace transform: $(t) + 3y'(t) + 2y(t) = te^t$, $y(0) = 1$, $y'(0) = 0$.	[5]	CO- 1,2,5	BT-3
Her	press the given function as a Fourier integral: $f(x) = \begin{cases} 1, & x < 1 \\ 0, & x > 1 \end{cases}$ note evaluate the following integral: $\frac{1}{2} \frac{\sin(u) \sin(ux)}{u} du$	[5]	CO-1, 3,5	BT-2,5
02 (b)	d the Inverse Fourier Transform of the function : $F(s) = e^{- s y}$	[5]	CO-1, 3	BT-1
i.e.	the Hankel Transform of order n of the function $H_n\{f(x)\} = F(s)$, then prove that: $\{f(ax)\} = \frac{1}{a^2} F\left(\frac{s}{a}\right)$	[5]	CO- 1,3	BT-5
	d the Inverse Hankel Transform: $H^{-1}\left[\frac{e^{-as}}{s}, n=0\right]$ here evaluate: $H^{-1}\left[\frac{1}{s}, n=0\right]$	[5]	CO- 1,3	BT-5
The	or casual sequence, $Z\{f(n)\} = F(z)$, en prove that: $\{f(n+k)\} = z^k \left\{F(z) - f(0) - \frac{f(1)}{z} - \frac{f(2)}{z^2} - \dots - \frac{f(k-1)}{z^{k-1}}\right\}$	[5]	CO- 1,4,5	BT-5
	ive inverse Z transform if $F(z) = \frac{1}{(z-2)(z-3)}$ en (i) $ z < 2$, (ii) $2 < z < 3$	[5]	CO- 1,4,5	BT-4

:::::25/11/2022::::E