BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BTECH BRANCH: CS/IT SEMESTER: III SESSION: MO/2022

SUBJECT:MA205 DISCRETE MATHEMATICS

TIME: 2 HOURS

FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.

3. Before attempting the question paper, be sure that you have got the correct question paper.

- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a) Show that $(\sim p \land (p \lor q)) \Rightarrow q$ is a tautology Q1 (b) Find the least n for which the statement is true and then using mathematical induction prove that $(1 + n^2) < 2^n$	[2] [3]	CO 1 CO1 CO1	BL BT4 BT1
Q2 (a) Find whether $(p \land q) \rightarrow q$ and $\overline{(p \land q)} \lor q$ is logically equivalent or not. Q2 (b) Prove or disprove. $\forall x \in R$, $x^3 > x^2$.	[2] [3]	CO1 CO1	BT1 BT5
Q3 (a) Solve $a_{r+1} - Cos \alpha a_r + a_{r-1} = 0$ Q3 (b) Find the solution of the following recurrence relation $a_{r+1} - a_r = r^2$	[2] [3]	CO1 CO1	BT3 BT1
Q4 (a) Solve the recurrence relation $a_r - 2a_{r-1} + a_{r-2} = 2^r$; $r \ge 2$ by the method of generating function satisfying the boundary conditions $a_0 = 2$, $a_1 = 1$	[2]	CO1	BT3
Q4 (b) Solve the recurrence relation $a_{r+3} + 16a_{r-1} = 0$	[3]	CO1	BT3
Q5 (a) Let A = {1, 2, 3, 4, 5 } and R be the relation defined by a R b if and only if a < b. Compute R^2 and R^3	[2]	CO2	BT3
Q5 (b) Determine whether the relation S on the set A is symmetric, antisymmetric and transitive. Set $A = \mathbb{R}^2 \setminus (0,0)$. The relation S is defined as $(x_1, y_1) S(x_2, y_2)$ if only if $x_1 \cdot y_2 = x_2 \cdot y_1$		CO2	BT4

:::::: 30/09/2022 :::::M