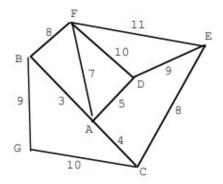

CLASS:		BTECH	BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/2022) SEMESTER : III SESSION : 402022	
BRANCH		CSE & IT 03 Hours	SESSION : MO2022 SUBJECT: MA205 DISCRETE MATHEMATICS FULL MARKS: 50	
INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates				
Q.1(a) Q.1(b)	 1(a) Construct a truth table to determine if the statement q ∨ (~ q ∧ p) is a tautology, a contingency or an absurdity. (C01, BT3) 1(b) Show that k is odd if and only if k³ is odd. (C04, BT3) 			
Q.1(c)	Show that k is odd if and only if k^3 is odd. (CO4, BT3) Use mathematical induction to prove that $1+2+3+n < \frac{(n+1)^2}{2}$ (CO4, BT3)			
Q.2(a) Q.2(b) Q.2(c)	Solve the recurrence relation $b_n = -3b_n - 2b_{n-2}$, $b_1 = -2$; $b_2 = 4$ (CO1, BT3) Find the particular solution of the recurrence relation $a_r + 5a_{r-1} + 6a_{r-2} = 3r^2$ (CO1, BT1) Solve the recurrence $a_{r+2} - 5a_{r+1} + 6a_r = 2$ by the method of generating function satisfying the initial conditions $a_0 = 1$ and $a_1 = 3$. (CO4, BT1)			[2] [3] [5]
Q.3(a) Q.3(b) Q.3(c)	Give a	a big-0 estim	d R = {(1,2), (2,3), (2,1)}. Find the transitive closure of R. (CO2, BT4) hate of $f(n) = 3n \log n! + (n^2 + 3)$ (CO5, BT2) and R is the relation whose matrix is $M_R = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	[2] [3] [5]
	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$ Determine whether R is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive. Give reasons for your answer. (CO5, BT5)			
Q.4(a) Q.4(b)	(CO5,	BT5) $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	R be the relation on A defined by aRb iff b = a+1. Give the transitive closure of R.	[2] [3]
	Let H	= 0 1 0 0 0 1	be a parity check matrix. Determine the (3,6) group code $e_{_H}:B^3->B^6$.	
Q.4(c)	f =		$g = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} \qquad h = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix}.$ Find whether f and g are commutative or not Find whether f, g and h follow the associative law or not. (CO5, BT1)	[5]

Q.5(a) If possible find Hamiltonian circuit of following graph.



Q.5(b) Determine whether the given graph has an Euler circuit and construct such a circuit by Fleury's [3] algorithm when one exists.

Q.5(c) Find minimum cost spanning tree by Prim's algorithm

[5]

:::::25/11/2022::::E