BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: B TECH BRANCH: BT/CE/ME/PIE/CEE

SUBJECT: MA203 NUMERICAL METHODS

TIME: 2 HOURS

FULL MARKS: 25

SESSION: MO/2022

SEMESTER: III

INSTRUCTIONS:

1. The total marks of the questions are 25.

2. Candidates attempt for all 25 marks.

3. Before attempting the question paper, be sure that you have got the correct question paper.

4. The missing data, if any, may be assumed suitably.

5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a) What is the accuracy of the following numbers? (i) 96.453 (ii) 0.002345 (iii) 4300.00 (iv) 88	[2]	C01	BLO2
Given $x = 0.1111 \times 10^4$ and $y = 0.1113 \times 10^4$. The relative error in Q1 (b) the values of x and y is 0.05%. calculate the relative error in $z = x - y$.	[3]	CO1	BLCO4
Find a real root of the equation $f(x) = x^3 - 2x^2 + 3x - 1$ on the interval Q2 (a) (0, 1) using bisection method with four iterations.	[2]	C01	BLCO3

Using iteration method find the real root of the equation $x^3 = 1 - x^2$ on the			
Q2 (b) interval [0,1] with an accuracy of 10 ⁻⁴	[3]	C01	BLCO4

Q3 (a)	Find the rar	ge of values of a such that Gauss-Jacobi's iteration method for	[2]	BLO3
	the set of	equations $x_1 + 2ax_2 = 7$, $ax_1 + x_2 = 3$ converges with any		
	choice of ini			

Q3 (b) Find an approximate value of f(3.8) using given data. [3] CO3 BL03

х	1	2	3	4
f(x)	1.6	2.2	3.1	4.3

Q4 (a)	Decompose the given coefficient matrix of the system of linear equations into		CO 2	BLO3
	Lower triangular matrix L and upper triangular matrix U.	[2]	COZ	BLU3

$$x + 2y + 3z - 14$$

$$2x + 5y + 2z = 18$$

$$3x + y + 5z = 20$$

Obtain the solution of the above system with the help of L-U triangular matrix Q4 (b) obtained above. [3] CO2 BL03

Q5 (a) Obtain the solution of the system of equations 28x + 4y - z = 32, 2x + 17y + 4z = 35, x + 3y + 10z = 24 [2] with initial approximation $(x_0, y_0, z_0) = (0, 0, 0)$ correct to 4 decimal place CO2 BLO3 using Gauss Seidel method. What are the eigen value of the least magnitude and corresponding eigen Q5 (b) vector (correct up to 2 decimal places) of matrix A obtained till third iteration [3] CO2 BLO4

using Power method where $A = \begin{pmatrix} -2 & -3 \\ 6 & 7 \end{pmatrix}$

:::::: 26/09/2022 :::::M