BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

			(END SE	MESTER	EXAMINA	TION)			
CLASS: BRANCH:	BTECH BT/CHEMICAL/ME	/PIE/CE					SEMESTER : III SESSION : MO/2022		
	SUBJECT: MA203 NUMERICAL METHODS								
TIME:	3:00 Hours						FULL MARKS: 50		
 Attem The m Before 	uestion paper conta pt all questions. issing data, if any, attempting the qu	may be as estion pap	sumed su per, be su	itably. re that y	ou have	got the correc			
Q.1(a)	1(a) If the number $\frac{\pi}{14} = 0.785398163$ is approximated by $\frac{11}{14}$, then							[5]	
	 (i) Find the number of digits up to which, this approximation is accurate (ii) Find the absolute and percentage errors 								
Q.1(b)	Perform four iterations of the Newton-Raphson method to obtain the approximate value of $(17)^{1/3}$ starting with the initial approximation $x_0 = 2$, correct upto 5 decimal places.							[5]	
Q.2(a)	Solve the system of equations by gauss-Jordan method: x + y + z + u = 2 2x - y + 2z - u = -5							[5]	
3x + 2y + 3z + 4u = 7									
	x - 2y - 3z + 2u = 5								
Q.2(b)	Using power method find the dominant eigen value and the corresponding eigen vector for the matrix $A = \begin{pmatrix} -15 & 4 & 3\\ 10 & -12 & 6\\ 20 & -4 & 2 \end{pmatrix}$							[5]	
	Correct results upto 3 decimal places at each iteration and proceed till 4th iteration.								
Q.3(a)	Find the value of $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$ at $x = 1$, from the table given below:							[5]	
	x -1	1	2	3]				
	F(x) 7	5 [.]	19	51					
Q.3(b)	Using the following data, find the value of x corresponding to $y = f(x) = 100$ x 3 5 7 9 11							[5]	
	y 6	-	, 58	108	174]			
Q.4(a)	Find the value of the integral $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's 1/3 rd rule with step size $h = \frac{1}{4}$ correct to 5 decimal places. Further, estimate the value of π from the integral.							[5]	
Q.4(b)	If Δ is the forward difference operator, then find $\Delta^4 y_0$. Hence find the general expression for $\Delta^n y_0$ in [5]								

- Yere y_0 If Δ is the forward difference operator, then find $\Delta^* y_0$. Hence find the general expression for $\Delta^n y_0$ in [5] terms of y_0, y_1, \ldots, y_n that does not involve the difference operator
- Q.5(a) For the initial value problem $\frac{dy}{dx} = y, y(0) = \alpha$. If y(1) = 1, find the value of k_3 obtained by [5] Runge-Kutta fourth order method, correct to 4 decimal places.
- Q.5(b) Determine the value of y correct to 4 decimal places using Euler's method when x=0.04 given that $\begin{bmatrix} 5 \end{bmatrix}$ $y' = x^2 + y$, y(0) = 1, when h=0.2 and compare with the exact answer.

:::::21/11/2022:::::M