BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO 2022)

CLASS:IA BRANCH		SEMESTER : III SESSION : MO/2022	
TIME:	SUBJECT: MA201 PARTIAL DIFFERENTIAL EQUATIO	DNS FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 			
Q.1(a)	Find the partial differential equation arising from Z=ax+by+ab, where a BT2	a and b are constants. CO1,	[2]
Q.1(b)	Obtain the partial differential equation by eliminating the arbitrary fur	nction f from z=f(x-y). CO2,	[3]
Q.1(c)	BT2 Find the general integral of yzp+xzq=xy, CO2, BT3		[5]
Q.2(a)	Show that the integral surface of the equation $2y(u-3)p + (2x-u)q - y(2x-3)$ that passes through the circle $x^2 + y^2 = 2x$, $u = 0$ is $x^2 + y^2 - u^2 - 2x + 4u = 0$. CO3, BT3		[2]
Q.2(b) Q.2(c)	Solve the following Cauchy problem using method of characteristic $u_x+u_y=$ Find a complete integral of $z=px+qy+p^2+q^2$ CO3, BT3	2, u(x,0)=x ² CO3,BT3	[3] [5]
Q.3(a) Q.3(b) Q.3(c)	Find a general solution of $(p+q)(z-xp-yq)=1$ CO3, BT2 Solve $(D^2+3DD'+2D'^2)z=x+y$ CO3, BT3 Reduce the following equations to canonical form and solve: $4u_{xx} - 12u_{xy} + 9u_{yy} = e^{3x+2y}$ CO2, BT3		[2] [3] [5]
Q.4(a) Q.4(b) Q.4(c)	Classify the following partial differential equation $2u_{xx}+4u_{xy}+3u_{yy}=2$ CO1, Show that the function $u=rac{1}{2}t$ exp(- $x^2/4kt$) satisfies one-dimensional heat Solve the following boundary value problem with following boundar $u(0,t)=0$, $u(1,t)=1$, $u(x,0)=x^2$ CO5, BT3	equation. CO1, BT2	[2] [3] [5]
Q.5(a)	Find D'Alembert's solution of one-dimensional wave equation with the	e following initial condition	[2]

- Q.5(a) Find D'Alembert's solution of one-dimensional wave equation with the following initial condition [2] $u(x,0)=\sin x$, $u_t(x,0)=0$. CO1, BT2
- Q.5(b) Using Duhamel's principle, solve u_{tt} - u_{xx} = x-t, - ∞ <x< ∞ , u(x,0)=0, $u_t(x,0)$ =0 CO4, BT3 [3]
- Q.5(c) Solve the following boundary value problem with the following boundary conditions $u_{xx}+u_{yy}=0$, 0 < x < 1, [5] 0 < y < 1, u(x,0)=x(x-1), u(x,1)=0, $0 \le x \le 1$, u(0,y)=0, u(1,y)=0, $0 \le y \le 1$. CO5, BT3

:::::23/11/2022::::E