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Q.1(a) Determine whether the matrix 𝐴 =

0 3 2 1
0 0 2 2
0 0 0 3
0 0 0 0

   is nilpotent. 
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Q.1(b) Show that if 𝐴  is a 2 × 2  orthogonal matrix then each of the two rows is a unit vector 
and the dot product of the two rows equals zero. 
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Q.2(a) Find the reduced row echelon form of the matrix 

5 20 −18
3 12 −14

−4 −16 13
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Q.2(b) Find the rank of the matrix 

−2 1 1 15
6 −1 −2 −36
1 −1 −1 −11

−5 −5 −5 −14
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Q.3(a) Solve the following system of linear equations by Gauss Elimination method: 

4𝑥 − 2𝑦 − 7𝑧 = 5 , −6𝑥 + 5𝑦 + 10𝑧 = −11, −2𝑥 + 3𝑦 + 4𝑧 = −3 , −3𝑥 + 2𝑦 + 5𝑧 = −5 
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Q.3(b) Find the matrix of the linear transformation 𝑇: 𝑅𝟛 → 𝑅𝟛  with respect to the standard 
ordered basis for 𝑅𝟛: 

𝑇(𝑥, 𝑦, 𝑧) = (−6𝑥 + 4𝑦 − 𝑧, −2𝑥 + 3𝑦 − 5𝑧, 3𝑥 − 𝑦 + 7𝑧) 
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Q.4(a) 

Determine whether the matrix 
0 1 0
1 0 0
0 0 1

  is diagonalizable. 
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Q.4(b) Find the minimal polynomial for the matrix 

3 3 0
3 3 0
0 0 6
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Q.5(a) Find 𝐴   for the matrix 

1 2 0
2 −1 0
0 0 −1

   using Cayley Hamilton Theorem. 
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Q.5(b) Determine the nature of quadratic form generated by the matrix 𝐴 =
1 0
0 2
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