BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO 2022)

CLASS: BRANCH:		SEMESTER: I SESSION: MO/2022			
TIME:	SUBJECT: MA104 MATHEMATICS FOR ARCHITECTS 02 HOURS FULL	SUBJECT: MA104 MATHEMATICS FOR ARCHITECTS FULL MARKS: 25			
INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates					
Q.1(a)	Find the rank of the matrix A where $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & 2 \\ 3 & 7 & 3 \end{pmatrix}$.	[2]	CO M1, CO1, CO3,	B L	
Q.1(b)	Test for consistency and solve: 5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10 z = 5.	[3]	M1, CO1, CO3	L	
Q.2(a)	Verify Cayley-Hamilton theorem for the matrix A= $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.	[2]	M1, CO1, CO3,	Ľ	
	Find the Eigen values and Eigen vectors for the following matrix: $\begin{bmatrix} 8 & 2 \\ -4 & 2 \end{bmatrix}$.	[3]	M1, CO1, CO3,	Ľ	
Q.3(a)	Using rank method, solve the equations: x + y + z = 6; $x + 2y + 3z = 14$; $2x + 4y + 7z = 30$	[2]	M1, CO1, CO3,	Ľ	
Q.3(b)	Find the n-th derivative of sin 6x cos 4x.	[3]	M2, CO1, CO3,	Ľ	
Q.4(a)	Find the nth derivative of $x^2 \cos x$.	[2]	M2, CO1,	Ľ	
	Evaluate $\lim_{x \to \pi/2} (\sin x)^{\tan x}$.	[3]	CO3, M2, CO1, CO3,	L1	
Q.5(a)	Expand $e^{\sin x}$ by Maclaurin's series upto the term containing x^4 .	[2]	M2, CO1,	Ľ	
	Using integral calculus, Find the area of a circle of radius "a".	[3]	CO3, M2, CO1, CO3,	L1	

:::::19/01/2023 :::::M