BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

	SEMESTER: I SESSION: MO/2022		
SUBJECT: MA102 REAL ANALYSIS			
TIME: 2 HOURS	FULL MARKS: 25		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates. 			
Q.1(a) Define supremum and infimum of a non-empty subset of \mathbb{R} . Q.1(b) Calculate the supremum and the infimum of the set $\left\{\frac{n+(-1)^{2n}}{n}, n \in \mathbb{N}\right\}$.	[2] [3]		Bl 1 3
Q.2(a) Construct examples of a closed set and an open set which are not intervals. Q.2(b) Let $G \subseteq \mathbb{R}$ be an open set and $F \subseteq \mathbb{R}$ be a closed set. Explain the nature of the set F^c ?	[2] et G∩ [3]		3 2
Q.3(a) Find the formula for the nth term of the sequence $\frac{100}{2}$, $\frac{-(100)^2}{6}$, $\frac{(100)^3}{24}$, $\frac{-(100)^4}{120}$,	[2]	1	3
Q.3(b) Examine the convergence or divergence of the sequence $\left\{\frac{n!}{n^n}\right\}$.	[3]	3	4
Q.4(a) Examine the monotonicity of the sequence $\left\{\frac{4^{n+1}+3^n}{4^n}\right\}$.	[2]	1	4
Q.4(b) Show that every Cauchy sequence is bounded.	[3]	2	4
Q.5(a) Find the limit of the sequence $\left\{\frac{1+\sqrt[2]{2}+\sqrt[3]{3}+\dots+\sqrt{n}}{n}\right\}$.	[2]	3	3
Q.5(b) Examine convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n}$.	[3]	3	4

:::::: 17/01/2023 :::::M