BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)				
CLASS: BRANCH		EMESTER : I ESSION : MO/2022		
TIME:	SUBJECT: MA102 REAL ANALYSIS 3 Hours F	FULL MARKS: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a)	Find the Supremum and the Infimum of the set $A = \left\{ \frac{1-(-1)^n}{n^2}; n \in \mathbb{N} \right\}.$	[5]	CO 1	BL 1
Q.1(b)	Define a limit point and an interior point of a nonempty subset of \mathbb{R} . Calculate limit points and interior points of the set \mathbb{Q} of all rational numbers, if there be any.	[5] e	1	1+3
Q.2(a)	Check the monotonicity, boundedness and convergence of the sequence $a_n = \frac{n!}{n^n}$, $n \in \mathbb{N}$. If convergent, find its limit.	₌ [5]	3	1
Q.2(b)	Show that every Cauchy sequence is bounded.	[5]	2	3
Q.3(a)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 - n + 1}$.	[5]	3	4
Q.3(b)	Examine whether the following series is convergent or not $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n}$.	[5]	3	4
Q.4(a)	For each $n \in \mathbb{N}$, let $f_n: [0, \infty) \to [0, \infty)$ be defined by $f_n(x) = \frac{nx}{1+n^2x^2}$. Find function $f: [0, \infty) \to [0, \infty)$ such that $\{f_n\}$ converges to f on $[0, \infty)$. Explain if the convergence is uniform		3	2
Q.4(b)	Show that the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ is uniformly convergent over \mathbb{R} .	[5]	3	3
Q.5(a)	A function f is defined on [0,1] by f(x) = 1, if x is rational 0, if x is irrational	[5]	3	4
Q.5(b)	Examine whether f is R -integrable on [0,1]. Apply the fundamental theorem of integral calculus to find the value of $\int_{-2}^{2} f(x) dx$ where $f(x) = 3x^2 Cos \frac{\pi}{x^2} + $	_{r,} [5]	5	3
	$2\pi Sin\frac{\pi}{x^2}, x \neq 0,$ = 0, x = 0.			

:::::16/03/2023:::::M