BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	IMSC FOOD TECHNOLOGY			SEMESTER : IX SESSION : MO/2022			
TIME:	SUBJECT: FT515 FOOD PROCESSING EQUIPMENT DESIGN 3:00 Hours	FULL MARKS: 50					
INSTRUCT 1. The qu 2. Attem 3. The m 4. Before 5. Tables	FIONS: Jestion paper contains 5 questions each of 10 marks and total 50 marks. pt all questions. issing data, if any, may be assumed suitably. A attempting the question paper, be sure that you have got the correct question pa A Data hand book/Graph paper etc. to be supplied to the candidates in the examina	aper. ation h	nall.	_			
Q.1(a)	Why excess air is used in the combustion reaction? How can we calculate the percentage of excess air used in the reaction?	the [[2]	CO 1	BL 1		
Q.1(b)	In the production of SO_3 , 100 kmol of SO_2 and 100 kmol of O_2 are fed to a reactor the percentage conversion of SO_2 is 80, calculate the composition of the production of the produc	. If [uct	[3]	1	3		
Q.1(c)	Chlorinated diphenyl is heated from 40°C to 280°C in an indirectly fired heater at to rate of 4000 kg/h. Calculate the heat required to be added to the fluid in the heat The heat capacity of the fluid in this temperature range is given by $C = 0.7511+1.465 \times 10^{-3} \text{ T}$, kJ/(kg.K) where T is in K.	the [er.	[5]	1	3		
Q.2(a)	Why log mean temperature difference (LMTD) is used in heat exchangers calculating area required for heat transfer?	for [[2]	4	1		
Q.2(b)	Calculate the Reynolds number using following data: Mass flow rate = 41 kg Diameter = 10 mm viscosity = 4.65 cP	/h, [[3]	4	3		
Q.2(c)	Cold fluid is flowing through the heat exchanger at a rate of 15 m ³ /h. It enters the heat exchanger at 303 K and leaves at 328 K. The hot thermic fluid enters the heat exchanger at the rate of 21 m ³ /h at a temperature of 388 K. Find out the area of heat transfer required assuming the flow is countercurrent and overall heat transfer coefficient be 3490 W/(m ² .K). Data: Density of cold fluid = 1000 kg/m ³ Density of thermic fluid = 950 kg/m ³ Specific heat of cold fluid = 4.187 kJ/(kg.K) Specific heat of thermic fluid = 2.93 kJ/(kg.K)	the (eat eat fer	[5]	4	3		
Q.3(a)	Write the Bernoulli equation including pump work and friction losses in the unit J/kg form.	of [[2]	3	1		
Q.3(b)	Calculate the net positive suction head (NPSH) of the pump in meter using follow data: Vapor pressure of liquid = 20 kPa Distance between the level of liquid in the reservoir and suction line = 1.5 m Density of liquid = 800 kg/m^3 Friction in suction line = 3.5 J/kg	ing [[3]	3	3		
Q.3(c)	Water is to be pumped at a rate of 198 m ³ /h from a pond to a tank which is placed m above the pond level. The total length of pipeline is 1 km. The diameter of pipe 500 mm. Calculate the head loss due to friction and power requirement if purefficiency is 50%.	10 [e is mp	[5]	3	3		

Write the relationship between U_i , h_i , h_o , X_w/K and R_d . Q.4(a) 1 [2] 4 Q.4(b) Calculate the heat transfer area of 1-2 shell and tube heat exchanger from the [3] 4 3 following data: Inlet and outlet temperature of hot fluid are 423 K and 353 K, respectively. Inlet and outlet temperature of cold fluid are 303 K and 318 K, respectively. Overall heat transfer coefficient = $4100 \text{ W}/(\text{m}^2.\text{K})$ Heat loss = 407 kW Calculate the total length of double pipe heat exchanger required to cool 5500 kg/h of 3 Q.4(c) 4 [5] ethylene glycol from 358 K to 341 K using toluene as a cooling media which flows in counter current fashion. Toluene enters at 303 K and leaves at 335 K. Data: Outside diameter of outer pipe = 70 mm Outside diameter of inner pipe = 43 mm Wall thickness of both pipes = 3 mm Thermal conductivity of metal pipe is 46.52 W/(m.K)Ethylene glycol flows through the inner pipe.

Mean properties of two fluids are as below:

Property	Ethylene glycol	Toluene		
Density (kg/m ³)	1080	840		
Specific heat (kJ/(kg.K))	2.680	1.80		
Thermal conductivity (W/(m.K))	0.248	0.146		
Viscosity (Pa.s)	3.4×10 ⁻³	4.4×10 ⁻⁴		

- Q.5(a) An evaporator is fed with 15000 kg/h of a solution containing 10% NaCl, 15% NaOH and [2] 5 3 rest water. In the operation, water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45% NaOH, 2% NaCl, and rest water. Calculate kg/h of water evaporated.
- Q.5(b) Describe the following terms: (a) boiling point rise, (b) capacity of evaporator, (c) [3] 5 2 economy of an evaporator

3

Q.5(c) It is desired to concentrate 5000 kg/h of a solution of NaOH from 10% to 25% solids in a [5] 5 single-effect evaporator. Steam is available at 110°C, and the vapour space is maintained at 410 mmHg. The boiling point of water corresponding to the vapour space pressure is 84°C. The solution has a boiling point elevation of 10°C. The enthalpies of the feed and thick liquor are 90 and 80 kcal/kg, respectively and the enthalpy of the vapour is 650 kcal/kg. The feed enters at its boiling point corresponding to the vapour space pressure. Latent heat of steam (λ s) is 534 kcal/kg. Calculate the steam consumption per hour. If the available heat transfer area is 35 m², estimate the heat transfer coefficient.

:::::25/11/2022::::E