BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH			EMESTER : V ESSION : MO/2022		
TIME:	SUBJECT: FT302 HEAT TRANSFER IN FOOD PROCESSING 3:00 Hours	ULL MARKS: 50			
2. Atten 3. The r <i>4</i> . Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct question pap es/Data hand book/Graph paper etc. to be supplied to the candidates in the examinat	ion hall.	_		
	What is critical thickness of insulation? What is the difference between Biot number and Jusselt number?	[1+1]	CO 1	BL 2	
Q1 (b) V T c c	Water flows at 50 °C inside a 2.5-cm-inside-diameter tube such that $h_i = 3500 \text{ W/m}^2$. °C. The tube has a wall thickness of 0.8 mm with a thermal conductivity of 16 W/m. °C. The butside of the tube loses heat by free convection with $h_o = 7.6 \text{ W/m}^2$ °C. Calculate the overall heat-transfer coefficient and heat loss per unit length to surrounding air at 20 C.	 -	2	4	
Q1 (c) A i t	An aluminum sphere mass of 5.5 kg and initially at a temperature of 290 °C is suddenly mmersed in a fluid at 15 °C with heat transfer co-efficient 58 W/m ² K. Estimate the ime required to cool the aluminum to 95 °C for aluminum take ρ = 2700 kg/m ³ , c = 900 V/kg K, k = 205 W/m.K.	2	2	3	
S	What is meant by the radiation shape factor? A sphere of radius R_1 is enclosed in a phere of radius R_2 . Find the shape factor of radiation heat transfer of the outer sphere with respect to inner sphere?		2	1, 2	
Q2 (b) 1 5 F	Two large parallel planes with emissivity of 0.3 & 0.5 are maintained at temperature of 527 °C & 127 °C respectively. A radiation shield having emissivity of 0.05 on both sides is blaced between them. Calculate, 1) Heat transfer rate between them without shield. 2) Heat transfer rate between them with shield.		2	4	
e i c t	An insulated cylindrical pipe of 0.2 m diameter has a surface temperature of 45 °C. It is exposed to black body surroundings at 25 °C. The emissivity & absorptivity of the nsulation surface are 0.96 & 0.93 respectively. The convective heat transfer co-efficient butside the insulation surface is $3.25 \text{ W/m}^2\text{K}$. The surrounding fluid may be assumed to be transparent. Evaluate the percentage contribution from radiation to the total heat ransfer rate to the surroundings.	 - -	2	5	
Q3 (b) S	Define effectiveness of heat exchanger. What is meant by the "minimum" fluid? Suppose a person stated that heat cannot be transferred in a vacuum. How do you respond?	[1+1] ı [2]	1 1	2 2	
Q3 (c) E Q3 (d) N	Explain the dielectric, ohmic and infrared heating process. Name few microwaves heating equipment. What are the advantages of microwave and radio-frequency heating in food processing?	[3] [1+2]	4 4	1 1	
	What is a fouling factor? When is the LMTD method most applicable to heat-exchanger calculations?	[.] [1+1]	3	1, 2	
Q4 (b) V e s T	Water flows at the rate of 65 kg/min through a double pipe counter flow heat exchanger. Water is heated from 50 °C to 75 °C by an oil flowing through the tube. The pecific heat of the oil is 1.780 KJ/Kg.K. The oil enters at 115 °C and leaves at 70 °C. The overall heat transfer co-efficient is 340 W/m ² . K. Calculate the following, 1) Heat exchanger area, 2) Rate of heat transfer.	2	3	4	
Q4 (c)	When 0.6 kg of water per minute is passed through a tube of 2 cm diameter, it is found to be heated from 20 °C to 60 °C. the heating is achieved by condensing steam on the surface of the tube and subsequently the surface temperature of the tube is maintained at 90 °C. Determine the length of the tube required for fully developed flow. Given: At bulk mean temperature properties of water, $\rho = 995 \text{ kg/m}^3$, v = 0.657 x 10-6		3	5	
r	n²/s, Pr = 4.340, K = 0.628 W/m. K, Cp = 4178J/kg. K, for laminar flow Nu = 3.66 & for urbulent flow Nu = 120			ΡΤΟ	

Q5 (b) Q5 (c)	Distinguish between nucleate and film boiling. Define the steam economy and capacity of an evaporator. Draw the triple effect forward feed evaporator. It is desired to concentrate a 20% salt solution (20 kg of salt in 100 kg of solution) to a 30% salt solution in an evaporator. Consider a feed of 300 kg/min at 30 °C. The boiling point of the solution is 110 °C, the latent heat of vaporization is 2100 KJ/Kg, & the specific heat of the solution is 4 KJ/Kg.K. Find the rate at which heat must be supplied	[2] [2] [2] [4]	5 5 5 5	1 1 2 5
	specific heat of the solution is 4 KJ/Kg.K. Find the rate at which heat must be supplied (in KJ/min) to the evaporator?			

:::::22/11/2022:::::M