BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION SP2022)

CLASS: BRANCH	M.Tech./PRE-PHD : EEE	SEMESTER: I SESSION: MO 2022	
TIME:	SUBJECT: EE519 COMPUTATIONAL TECHNIQUES IN 03 Hours	N ELECTRICAL ENGINEERING FULL MARKS: 50	
INSTRUC 1. The q 2. Atten 3. The n 4. Table	TIONS: uestion paper contains 5 questions each of 10 marks and to opt all questions. nissing data, if any, may be assumed suitably. s/Data handbook/Graph paper etc., if applicable, will be su	otal 50 marks. Ipplied to the candidates	
Q.1(a) Q.1(b)	Define design constraints, variable bounds and objective fur optimal design formulation process. Find the value of y when $x = 0.1$, y (0) = 1 and h = 0.1 for $\frac{dy}{dx} = 3x + y^2$, using Runge's Kutta fourth order.	nction. Also, make a flow chart for the	[5] CO-2 [5] CO-2
Q.2(a)	Design the fuzzy logic-based application related to electrica	l engineering.	[5] CO-5

- Q.2(b) Design the neural network-based application related to electrical engineering.
- Q.3(a) Describe the biological neural network. Also, write the comparison between brain versus [5] computer. [5]
- Q.3(b) Find the new weights using back-propagation network for the network shown in figure below. It is [5] presented with the input pattern [0,1] and the target output is 1. Use a learning rate α = 0.25 and CO-3 binary sigmoidal activation function.

Q.4(a) Consider two fuzzy sets $\tilde{A} = \left\{\frac{0.2}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4}\right\}$, $\tilde{B} = \left\{\frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{1}{4}\right\}$. Find the algebraic [2] CO-3 sum, algebraic product, bounded sum and bounded difference of the given fuzzy sets.

Q.4(b) Consider a universe of aircraft speed near the speed of sound as $\tilde{X} = \{0.72, 0.725, 0.75, 0.775, [3] 0.78\}$ and a fuzzy set on this universe for the speed "near mach 0.75" = \tilde{M} where $\tilde{M} = CO-3$ $\left\{\frac{0}{0.72} + \frac{0.8}{0.725} + \frac{1}{0.75} + \frac{0.8}{0.775} + \frac{0}{0.78}\right\}$. Define a universe of altitudes as $Y = \{21, 22, 23, 24, 25, 26, 27\}$ in k-feet and a fuzzy set on this universe for the altitude fuzzy set "approximately 24,000 feet" = \tilde{N} where $\tilde{N} = \left\{\frac{0}{21k} + \frac{0.2}{22k} + \frac{0.7}{23k} + \frac{1}{24k} + \frac{0.7}{25k} + \frac{0.2}{26k} + \frac{0}{27k}\right\}$ (i) Construct a relation $\tilde{R} = \tilde{M} \times \tilde{N}$ (ii) For another aircraft speed say $\tilde{M_1}$, in the region of mach 0.75 where $\tilde{M_1} = \left\{\frac{0}{0.72} + \frac{0.8}{0.725} + \frac{1}{0.75} + \frac{0.6}{0.775} + \frac{0}{0.78}\right\}$ find the relation $\tilde{S} = \tilde{M_1} \circ \tilde{R}$ using max-min relation.

[5] CO-4 Q.4(c) These three fuzzy sets $\widetilde{B_1}$, $\widetilde{B_2}$, $\widetilde{B_3}$ shown in figures below represents the uncertainty in each survey as to the membership of right-of -way width, in meters. Calculate the fuzzified values using the (i) center of largest area and (ii) centroid method. (Maximum height of figure 1, 2, and 3 are 0.3, 0.5 and 1 respectively) [5]

Q.5(a)	Describe the architecture of perceptron, learning rule and training algorithm.	[5] CO-1 [5] CO-1
Q.5(b)	Describe the Neuro fuzzy hybrid systems, neuro genetic hybrid systems and fuzzy genetic hybrid systems in detail.	

