BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION SP2022)

CLASS: M.Tech./PRE-PHD
BRANCH: EEE

SEMESTER:
SESSION: MO 2022

SUBJECT: EE519 COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING
TIME: 03 Hours

FULL MARKS: 50

INSTRUCTIONS

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Define design constraints, variable bounds and objective function. Also, make a flow chart for the optimal design formulation process.
[5]
CO-2
Q. 1 (b) Find the value of y when $\mathrm{x}=0.1, \mathrm{y}(0)=1$ and $\mathrm{h}=0.1$ for $\frac{d y}{d x}=3 x+y^{2}$ using Runge's Kutta fourth order.
Q.2(a) Design the fuzzy logic-based application related to electrical engineering.
Q.2(b) Design the neural network-based application related to electrical engineering.
Q.3(b) Find the new weights using back-propagation network for the network shown in figure below. It is presented with the input pattern $[0,1]$ and the target output is 1 . Use a learning rate $\alpha=0.25$ and binary sigmoidal activation function.

Q.4(a) Consider two fuzzy sets $\tilde{A}=\left\{\frac{0.2}{1}+\frac{0.3}{2}+\frac{0.4}{3}+\frac{0.5}{4}\right\}, \tilde{B}=\left\{\frac{0.1}{1}+\frac{0.2}{2}+\frac{0.2}{3}+\frac{1}{4}\right\}$. Find the algebraic sum, algebraic product, bounded sum and bounded difference of the given fuzzy sets.
Q.4(b) Consider a universe of aircraft speed near the speed of sound as $X=\{0.72,0.725,0.75,0.775$, 0.78 \} and a fuzzy set on this universe for the speed "near mach 0.75 " $=\widetilde{M}$ where $\widetilde{M}=$ $\left\{\frac{0}{0.72}+\frac{0.8}{0.725}+\frac{1}{0.75}+\frac{0.8}{0.775}+\frac{0}{0.79}\right\}$. Define a universe of altitudes as $Y=\{21,22,23,24,25,26$, $27\}$ in k-feet and a fuzzy set on this universe for the altitude fuzzy set "approximately 24,000 feet" $=\tilde{N}$ where $\tilde{N}=\left\{\frac{0}{21 k}+\frac{0.2}{22 k}+\frac{0.7}{23 k}+\frac{1}{24 k}+\frac{0.7}{25 k}+\frac{0.2}{26 k}+\frac{0}{27 k}\right\}$
(i) Construct a relation $\widetilde{R}=\widetilde{M} \times \widetilde{N}$ (ii) For another aircraft speed say $\widetilde{M_{1}}$, in the region of mach 0.75 where $\widetilde{M}_{1}=\left\{\frac{0}{0.72}+\frac{0.8}{0.725}+\frac{1}{0.75}+\frac{0.6}{0.775}+\frac{0}{0.78}\right\}$ find the relation $\tilde{S}=\widetilde{M}_{1} \circ \tilde{R}$ using max-min relation.
Q.4(c) These three fuzzy sets $\widetilde{B_{1}}, \widetilde{B_{2}}, \widetilde{B_{3}}$ shown in figures below represents the uncertainty in each survey as to the membership of right-of -way width, in meters. Calculate the fuzzified values using the (i) center of largest area and (ii) centroid method. (Maximum height of figure 1, 2, and 3 are $0.3,0.5$ and 1 respectively)

Q.5(a) Describe the architecture of perceptron, learning rule and training algorithm.
Q.5(b) Describe the Neuro fuzzy hybrid systems, neuro genetic hybrid systems and fuzzy genetic hybrid systems in detail.
