BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO2022)

CLASS: BRANCH	M.Tech / PRE-PHD SE EEE SE		MESTER : I SSION : MO2022	
TIME:	SUBJECT: EE507 ADVANCED POWER ELECTRONICS 03 Hours	JLL MARKS	: 50	
INSTRUC 1. The c 2. Atten	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. missing data, if any, may be assumed suitably.			
4. Table	es/Data handbook/Graph paper etc., if applicable, will be supplied to the car	ndidates		
Q.1(a)	What are the conditions for a thyristor to conduct?	[2]	CO1 (BL1-Knowledge) CO1 (BL1-Knowledge) CO3 (BL4-Analyze	
Q.1(b)	Draw the transfer, output, and switching characteristics of MOSFET	[3]		
Q.1(c)	Discuss the steps required to design a heat sink for power electronic module.	[5]		
Q.2(a)	Is volt-second balance and charge balance applicable under transi conditions? Explain.	ent [2]	CO3 (BL4-Analyze) CO2 (BL2-Understand) CO4 (BL4-Analyze)	
Q.2(b)	Discuss the practical issues associated with isolated DC-DC converter.	[3]		
Q.2(c)	Explain operation of push-pull converter and illustrate with transformer prim voltage, flux, inductor current, switch current and switch voltage waveforms.	ary [5]		
Q.3(a)	What is third harmonic PWM?	[2]	CO1 (BL1-Knowledge) CO3 (BL2-Understand) CO5 (BL5-Evaluate) (BL6- Create)	
Q.3(b)	Illustrate the key features and advantages of the cascaded multilevel inver topology?	ter [3]		
Q.3(c)	Design space vector modulation based control strategy for three phase volta source inverter.	age [5]		
Q.4(a)	What is the principle of series resonant inverter?	[2]	CO1 (BL1-Knowledge) CO4 (BL4-Analyze) (BL5-Evaluate)	
Q.4(b)	A series resonant inverter with parallel-loaded delivers a power of PL = 1 kW a peak sinusoidal load voltage of Vp = 330 volt and at resonance. The la resistance is R = 10 ohm and resonant frequency is 20 kHz. Determine (a) input voltage Vs, (b) the frequency ratio u if it is required to reduce the la power to 250 w by frequency control, (c) the inductor L and, (d) the capacito	at [3] bad DC bad tor		
Q.4(c)	C. Design L-Type Zero Current Switching Resonant Converter.	[5]	CO5 (BL5-Evaluate) (BL6- Create)	
Q.5(a)	Draw the PIN diagram of TLP 250.	[2]	CO2 (BL2-Understand) CO3 (BL2-Understand) CO5 (BL5-Evaluate) (BL6- Create)	
Q.5(b)	Explain the various protection schemes required for power electronic switche	s. [3]		
Q.5(c)	Design a GATE driver circuit for SiC based MOSFET using MIC4425.	[5]		

:::::23/11/2022::::E