CLASS: BRANCH	1:	B BTECH EEE	IRLA INSTITUTE OF TECHNOLOGY, MESRA, RANC (END SEMESTER EXAMINATION MO/2022)	HI SEMESTER : VII SESSION : MO//2022	
TIME:		03 Hours	SUBJECT: EE439 APPLIED CONTROL THEORY	FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 					
Q.1(a) Q.1(b)	Define Derive $\dot{x} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	e State and state value transfer function $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$	ariables of a dynamic system. of the given state model		
Q.1(c)	y – L Const G(s)	Construct state model for the transfer function given by $G(s) = \frac{(s+3)}{s^{3}+9s^{2}+24s+20}$			
Q.2(a) Q.2(b)	A dynamic system has a unique set of state variables. Counter this Statement Obtain the eigen values and eigen vectors for the matrix given by $ \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} $				
Q.2(c)	Invest	tigate the following \dot{x}	g system for controllability and observability $ = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u $ $ = \begin{bmatrix} 1 & -1 \end{bmatrix} x $		
Q.3(a) Q.3(b)	Distin Expla	guish between physing the second s	sical variables and phase variables used as state v odel Reference Adaptive Control System.	ariables of the system.	

[2] [3]

[5]

[2] [3]

[5]

[2] [3]

[2]

[3]

[5]

[2]

[3]

Q.3(c) For the system given below, an observer is to be designed to estimate the state variables. Select the [5] observer gain and write the equations describing the observer dynamics.

$$\dot{x} = \begin{bmatrix} -4 & -4 \\ 1 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Observer eigen value should be (-10,-10)

- Q.4(a) How can a state transition matrix can obtain from Laplace transform method?
- Q.4(b) Find the Describing function of a relay with a dead zone
- Q.4(c) Discuss the role of performance measure in optimal control.
- Q.5(a) Explain the meaning and physical significance of controllability and observability.
- Q.5(b) Explain the difference in principle and application areas of robust control and adaptive control.
- Q.5(c) Obtain the linearized model for the nonlinear system given below in the vicinity of the equilibrium [5] point.

$$x_{1}^{\bullet} = -(\frac{x_{1}}{x_{2}}) + x_{3}^{2}$$
$$x_{2}^{\bullet} = -x_{1}x_{2}$$
$$x_{3}^{\bullet} = -3x_{3} + x_{1}$$

:::::23/11/2022:::::M