BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO2022)

CLASS: B.TECH. SEMESTER: VII
BRANCH: ELECTRICAL & ELECTRONICS ENGINEERING SESSION: MO/2022

SUBJECT: EE437 INDUSTRIAL DRIVES AND CONTROL

TIME: 03 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	List few applications of electrical drives.	[2]	CO1 (BL1-Knowledge)
Q.1(b)	List three advantages of electrical drives for electric vehicle application.	[3]	CO1
Q.1(c)	Discuss at least five types of power modulators used in electrical drives.	[5]	(BL1-Knowledge) CO1 (BL1-Knowledge)
Q.2(a)	Describe closed loop control of a motor using generalized block diagram.	[2]	CO2
Q.2(b)	Classify different types of motor duty cycle.	[3]	(BL2-Understand) CO2
Q.2(c)	Explain thermal model of a motor.	[5]	(BL2- Understand) CO2 (BL2- Understand)
Q.3(a)	Explain why DC series motor is more suitable for heavy torque applications as compared to other types of DC motors.	[2]	CO3 (BL3-Apply)
Q.3(b)	A 250 V, 12 Ampere and 2000 RPM shunt motor has the armature and field resistance of 1.0 Ω and 500 Ω . It drives at constant rated motor torque. Calculate the motor speed if the source voltage drops to 150 V.	[3]	CO3 (BL3-Apply)
Q.3(c)	Show interconnection of armature and field winding of a separately excited DC motors, series DC motor, and compound DC motor using appropriate diagram. Obtain speed torque characteristics in each case.	[5]	CO3 (BL3-Apply)
Q.4(a)	Analyze the equivalent circuit of a three phase induction motor and obtain expression of maximum torque.	[2]	CO4 (BL4-Analyze)
Q.4(b)	Compare dynamic braking with regenerative braking and comment which one more suitable for vehicular application.	[3]	CO4 (BL4-Analyze)
Q.4(c)	A star connected, 400V, 50Hz, 4 Pole, 1370 RPM three phase squirrel cage induction motor has per phase stator resistance of 1 Ω , rotor resistance referred to primary side is 4 Ω , stator leakage reactance of 3.5 Ω , and rotor leakage reactance referred to primary side of 3.5 Ω . The motor is controlled by a voltage source inverter between 10Hz and 50Hz only using constant V/F ratio control .Compute (i) maximum torque at 50Hz, (ii) maximum torque at 10Hz, (iii) starting torque at 10Hz, and (iv) starting current at 10Hz.	[5]	
Q.5(a)	Evaluate suitability of permanent magnet synchronous motor as compared to wound field synchronous motor for electric cars.	[2]	CO5 (BL5-Evaluate) (BL6- Create)
Q.5(b)	Compile list of critical issues during starting of a synchronous motor that can have detrimental effect on the motor. Discuss briefly.	[3]	CO5 (BL5-Evaluate) (BL6- Create)
Q.5(c)	Develop a closed loop control strategy for synchronous motor drive using Thyristor. Explain its operating principle.	[5]	CO5 (BL5-Evaluate) (BL6- Create)

:::::23/11/2022::::M