BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CL BR	ASS: ANCH	BTECH : EEE	SEMESTE SESSION:	R: 5 [™] MO/2	022
TIME:		SUBJECT: EE413 SENSORS AND TRANSDUCERS 2 HOURS	FULL MARKS: 25		
 INSTRUCTIONS: 1. The total marks of the questions are 25. 2. Candidates attempt for all 25 marks. 3. Before attempting the question paper, be sure that you have got the correct question paper. 4. The missing data, if any, may be assumed suitably. 5. Tables/Data handbook/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q1 Q1	(a) (b)	Define resolution and selectivity of a sensor. When is radiation method used for temperature measurement? State the ma components of a radiation pyrometer?	[2] in [3]	C0 C01 C01	BL BL1 BL1
Q2	(a)	List the desirable properties for selection of a material for strain gauge	ge [2]	CO1	BL1
Q2	(b)	Explain the operating principle of an LVDT with proper diagram ar mathematical relations. What are the applications of LVDT?	nd [3]	CO1 CO3	BL2
Q3	(a)	A Pt resistance thermometer measures temperature between 0 - 200°C. The resistance $R_T \Omega$ at T°C is given by $R_T = R_0 (1 + \alpha T + \beta T^2)$. $R_0 = 100 \Omega$, $R_{100} = 138 \Omega$, $R_{200} = 175.83 \Omega$. (i) Using the above information, solve for the values of α and β . (ii) Find the non-linearity at 100°C as a percentage of full-scale deflection	ne [2] .5	CO1 CO2	BL3
	(b)	A parallel plate capacitive sensor of area 'A' and separation of 'd' consists multiple dielectric mediums with dielectric constants (K_1 , K_2 and K_3) as show in the figure. Now, a single medium of dielectric constant K is to be used have the same capacitance between the two electrodes. Solve the problem find the value of K? $\frac{A/2}{K_1} \frac{K_2}{K_2} \frac{1}{2}$	of [3] vn to to	C01 C02	BL3
Q4		A permanent magnet is attached to an object. Explain how a magnetostrictive sensor can be used to determine the position of the object.	ve [5]	CO1 CO3	BL2

- Q5 (a) Differentiate between photoconductive and photovoltaic cells.
- [2] Q5 (b) An experiment to calibrate a Cu-Constantan thermocouple is conducted. With [3] cold junction temperature at 0° C, the emfs obtained at 100° C and 445° C are 5mV and 25mV respectively. Assuming a second order relation between thermoemf and temperature difference, solve the problem to find the following. (i)
 - Constants 'a' and 'b'.
 - (ii) If the thermocouple indicates an emf of 2mV with a cold junction temperature at 40°C, find the unknown hot junction temperature.
 - (iii) If cold junction is maintained at 40°C, what would be the emf when the hot junction is at 500°C?

:::::: 01/10/2022 :::::M

CO1

C01

CO2

BL4

BL3