BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (MID SEMESTER EXAMINATION)

CLASS:	BTECH	SEMESTER: V
BRANCH:	EEE	SESSION: MO/2022

SUBJECT: EE305 DIGITAL SIGNAL PROCESSING

TIME: $\quad 2$ HOURS
FULL MARKS: 25

INSTRUCTIONS:

1. The total marks of the questions are 25.
2. Candidates attempt for all 25 marks.
3. Before attempting the question paper, be sure that you have got the correct question paper.
4. The missing data, if any, may be assumed suitably.
5. Tables/Data handbook/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a) A continuous time signal is represented as $x(t)=15+\operatorname{Sin}\left[\left(\frac{\pi}{3}\right) t\right] \operatorname{Cos}\left[\left(\frac{\pi}{6}\right) t\right]$. What is the fundamental period of signal $y(t)=x(-t+2)+x(2 t+3) ?$
Q1 (b) The impulse response of discrete LTI system is $h(n)=(-1 / 2)^{n} u(n)+(1.01)^{n} u(n-$ 1). Determine this system is causal and /or stable. Justify your answer.

Q2 (a) The discrete time signals $\boldsymbol{x}(\boldsymbol{n})=1+\operatorname{Cos}\left(\frac{2 \pi}{6} \boldsymbol{n}\right)$ and $\boldsymbol{y}(\boldsymbol{n})=\operatorname{Sin}\left(\frac{2 \pi}{6} \boldsymbol{n}+\frac{\pi}{4}\right)$ with fundamental period of $\mathrm{N}=6$. Determine the Fourier series coefficients of $\boldsymbol{x}(\boldsymbol{n})$ and $\boldsymbol{y}(\boldsymbol{n})$.
(b) Find the Laplace transform of $x(t)=\mathrm{t} \frac{d}{d t}\left\{e^{-t} \operatorname{Cos}(\mathrm{t}) \mathrm{u}(\mathrm{t})\right\}$?

The Laplace transform of $\boldsymbol{x}(\boldsymbol{t})$ is $\mathrm{X}(\mathrm{s})=\frac{4 \boldsymbol{s}+5}{(s+2)(s-1)}$. If the Fourier transform of $\boldsymbol{x}(\boldsymbol{t})$) is exist, then find out the inverse Laplace transform of $X(\mathrm{~s})$?
(a) If $y(t)=x(t) * h(t)$ and $g(t)=x(3 t) * h(3 t)$ and given that $x(t)$ has Fourier transform $X(\omega)$ and $h(t)$ has Fourier transform $H(\omega)$. If $g(t)$ has the form $\quad g(t)=A y(B t)$. Determine the values of A and B.
Q3
(b) These are the following information about a continuous-time periodic signal with period 3 and Fourier coefficients $\boldsymbol{X}_{\boldsymbol{n}}$: (a) $\boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{X}_{\boldsymbol{n + 2}}$.
(b) $X_{n}=X_{-n}$. (c) $\int_{-0.5}^{0.5} x(t) d t=1$ (d) $\int_{0.5}^{1.5} x(t) d t=2$. Determine $x(t)$
(a) (i)For an input $x[\mathrm{n}]$, output $y[\mathrm{n}]$ of a system is related as $y[\mathrm{n}]=x[\mathrm{n}]+\mathrm{n}$. Determine whether it is stable/unstable, linear/nonlinear and time-variant/ non time-invariant. (ii)Consider a discrete time signal $x(n)=a^{n} u(n)$. What are the conditions for the $x[\mathrm{n}]$ to be energy signal and power signals are respectively?
(b) Let $X\left(e^{j \omega}\right)$ denote the Fourier transform of the signal $x(n)=\{-1,0,1, \underline{2}, 1$, $0,1,2,10,-1\},-3 \leq n \leq 7$. Perform the following calculations (a) Find
$X\left(e^{j \pi}\right)$ (b) Evaluate $\int_{-\pi}^{\pi}\left|\frac{d X\left(e^{j \omega}\right)}{d \omega}\right|^{2} d \omega$ (c) Find $\boldsymbol{X}\left(\boldsymbol{e}^{j 0}\right)$
Q5
(a) Determine the inverse z-transform of $X(\boldsymbol{Z})=\frac{1}{1024}\left[\frac{1024-z^{-10}}{1-o .5 z^{-1}}\right],|\boldsymbol{Z}|>$ 0.
(b) If $x_{1}(n)=\{1,2,3,4\}$ and $x_{2}(n)=\{1,-1,2,1\}$. Find the linear and circular

3 convolution of $x_{1}(n)$ and $x_{2}(n)$.

