CLASS: BRANCH:		BTECH SE/ EEE SES		MESTER: V SSION: MO/2022		
		SUBJECT: EE305 DIGITAL SIGNAL PROCESSING				
TIME:		2 HOURS	FULL MARKS: 25			
INS 1. 2. 3. 4. 5.	STRU The f Cand Befor The f Table	CTIONS: total marks of the questions are 25. lidates attempt for all 25 marks. re attempting the question paper, be sure that you have got the correct ques missing data, if any, may be assumed suitably. es/Data handbook/Graph paper etc. to be supplied to the candidates in the e	stion pa xamina	aper. tion ha	all.	
 Q1	(a)	A continuous time signal is represented as $x(t) = 15 + Sin \left[\left(\frac{\pi}{3}\right) t \right] Cos \left[\left(\frac{\pi}{6}\right) t \right]$. What is the fundamental period of signal	1t [2]	CO 1	BL 2	
Q1	(b)	y(t) = $x(-t+2) + x(2t+3)$? The impulse response of discrete LTI system is $h(n) = (-1/2)^n u(n) + (1.01)^n u(n)$ 1). Determine this system is causal and /or stable. Justify your answer.	n- [3]	2	6	
Q2	(a)	The discrete time signals $x(n) = 1 + \cos(\frac{2\pi}{6}n)$ and $y(n) = \sin(\frac{2\pi}{6}n + \frac{\pi}{4})$ with fundamental particular (x). Determine the Fourier particular (x) is a function of $y(n) = 1$ of $y(n) = 1$.	h [2]	3	3	
Q2	(b)	and $y(n)$. Find the Laplace transform of $x(t) = t \frac{d}{dt} \{e^{-t} Cos(t) u(t)\}$?	.) [3]	3	3	
		The Laplace transform of $x(t)$ is $X(s) = \frac{4s+3}{(s+2)(s-1)}$. If the Fourier transform of $x(t)$ is exist, then find out the inverse Laplace transform of $X(s)$?	of			
Q3	(a)	If $y(t) = x(t) * h(t)$ and $g(t) = x(3t) * h(3t)$ and given that $x(t)$ has Fourier transform $X(\omega)$ and $h(t)$ has Fourier transform $H(\omega)$.	ls [2] If	3	4	
Q3	(b)	g(t) has the form $g(t) = A y(Bt)$. Determine the values of A and B. These are the following information about a continuous-time periodic signal with period 3 and Fourier coefficients X_n : (a) $X_n = X_{n+2}$. (b) $X_n = X_{-n}$. (c) $\int_{-0.5}^{0.5} x(t) dt = 1$ (d) $\int_{0.5}^{1.5} x(t) dt = 2$. Determine $x(t)$	h [3] :)	3	3	
Q4	(a)	(i)For an input $x[n]$, output $y[n]$ of a system is related as $y[n] = x[n] + n$ Determine whether it is stable/unstable, linear/nonlinear and time-variant/ no time-invariant.(ii)Consider a discrete time signal $x(n) = a^n u(n)$. What are th	n. [2] n e	2	3	
Q4	(b)	conditions for the $x[n]$ to be energy signal and power signals are respectively? Let $X(e^{j\omega})$ denote the Fourier transform of the signal $x(n) = \{-1, 0, 1, 2, 1, 0, 1, 2, 1, 0, -1\}, -3 \le n \le 7$. Perform the following calculations (a) Find	[3]	3	6	
		$X(e^{j\pi})$ (b) Evaluate $\int_{-\pi}^{\pi} \left rac{dX(e^{j\omega})}{d\omega} ight ^2 d\omega$ (c) Find $X(e^{j0})$				
Q5	(a)	Determine the inverse z-transform of $X(z) = \frac{1}{1024} \left[\frac{1024 - z^{-10}}{1 - o.5z^{-1}} \right], z > 0$	[2]	3	3	
		U.				
Q5	(b)	If $x_1(n) = \{\underline{1}, 2, 3, 4\}$ and $x_2(n) = \{\underline{1}, -1, 2, 1\}$. Find the linear and circula convolution of $x_1(n)$ and $x_2(n)$.	ır [3]	3	3	

:::::: 28/09/2022 :::::M