BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION MO2022)

CLASS:	B.Tech.
BRANCH:	EEE

SEMESTER: V
BRANCH: EEE
SESSION: MO2022

SUBJECT: EE305 DIGITAL SIGNAL PROCESSING
TIME: 03 Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Identify the type of digital filter whose impulse responses are given below:
(i) $\mathrm{h}(\mathrm{n})=5 \boldsymbol{\delta}(\mathrm{n})-7 \boldsymbol{(n - 1})+7 \boldsymbol{(n - 3})-5 \delta(\mathrm{n}-4)$ (ii) $\mathrm{h}(\mathrm{n})=\boldsymbol{\delta}(\mathrm{n})+\boldsymbol{\delta}(\mathrm{n}-2)$
(ii) (iii) $h(n)=\boldsymbol{\delta}(\mathrm{n})-\boldsymbol{\delta}(\mathrm{n}-1)$ (iv) $\mathrm{h}(\mathrm{n})=\boldsymbol{\delta}(\mathrm{n})+\boldsymbol{\delta}(\mathrm{n}-1)$
Q. 1 (b) A length 9 Type- 1 real coefficient FIR filter has the following zeros $Z_{1}=-0.5, Z_{2}=0.3+j 0.5, Z_{3}=0.5$ $+\mathrm{j} \sqrt{3} / 2$ (i) Determine the locations of the remaining zero's. (ii) What is the causal type linear phase transfer function?
Q.1(c) Design an FIR filter to meet the following specifications: (i) Pass-band edge: $\mathrm{F}_{\mathrm{P}}=2 \mathrm{KHz}$ (ii) Stopband edge: $F_{S}=5 \mathrm{KHz}$ (iii) Pass-band attenuation: $A_{P}=2 \mathrm{~dB}$ (iv) Stop-band attenuation: $A_{S}=42 \mathrm{~dB}$ CO-4 (v) Sampling frequency: $F_{T}=20 \mathrm{KHz}$. (using fixed window functions)
Q.2(a) Consider the function $g(t)=e^{-t} \sin (2 \pi t) u(t)$, where $u(t)$ is the step function. Calculate the area under $\mathrm{g}(\mathrm{t})$. (Using DSP tools)
Q.2(b) Explain in detail the pipelining of instruction execution.
Q.2(c) Explain Harvard and SHARC architectures. Also, describe the various addressing modes used in DSP processor.
Q.3(a) The following causal IIR digital transfer function was designed using the impulse invariant method with $\mathrm{T}=0.3 \mathrm{~s}$:
$H(z)=\frac{2 z}{z-e^{-0.9}}+\frac{3 z}{z-e^{-1.2}}$
Determine its parent causal analog transfer function.
Q.3(b) Develop the recursive relation to determine the Chebyshev polynomial $C_{N}(x)$. Find out the value of $C_{3}(x)$ and $C_{4}(x)$ using recursive relation. Also, plot the graph $C_{N}(x)$ versus x for $N=3,0$ and 4.
Q.3(c) Design an IIR low-pass Butterworth filter using bilinear transformation for the following specifications:
Pass band: $0.8 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1, \quad|\omega|<0.2 \pi$
Stop band: $\left|\boldsymbol{H}\left(e^{j \omega}\right)\right| \leq 0.2, \quad 0.6 \pi \leq|\omega| \leq \pi \quad$ (Assume T= 1s)
Q.4(a) What is FFT? Calculate the number of complex multiplications, number of complex additions and number of memory locations needed in the calculation of DFT using DIT-/DIF-FFT algorithm with 32point sequence.
Q.4(b) Determine the z-transform for $\boldsymbol{x}(\boldsymbol{n})=|\boldsymbol{n}|\left(\frac{1}{2}\right)^{|n|}$. Sketch the pole-zero plot and indicate the ROC. Indicate whether or not the DTFT of the signal exist. (Give the proper justification)
Q.4(c) Consider the length-12 sequence, defined for $0 \leq \mathrm{n} \leq 11 x(n)=\{3,-1,2,4,-3,-2,0,1,-4,6$, $2,5\}$ with a 12 point DFT given by $\mathrm{X}(k)$. Evaluate (i) $\mathrm{X}(0)$, (ii) $\mathrm{X}(6)$, (iii) $\sum_{k=0}^{11} X(k)$, (iv) $\sum_{k=0}^{11} e^{-j \frac{4 \pi k}{6}} X(k)$ and (iv) $\sum_{k=0}^{11}|X(k)|^{2}$.
Q.5(a) Input $x(t)$ and output $y(t)$ of an LTI system are related by differential equation $y^{/ /}(t)-y^{/}(t)-6 y(\mathrm{t})=x(\mathrm{t})$. Find the impulse response $\mathrm{h}(\mathrm{t})$ of the system, which is neither causal nor stable (Sketch the ROC).
Q.5(b) A continuous-time periodic signal $x(\mathrm{t})$ is real-valued and has a fundamental period $\mathrm{T}=8$. The nonzero Fourier series coefficients for $x(t)$ are $X_{1}=X_{-1}=2, X_{3}=X_{-3}^{s}=4 j$. Express $x(\mathrm{t})$ in the form
$x(t)=\sum_{n=n}^{\infty} A_{n} \cos \left(\omega_{n} t+\phi_{n}\right)$
Q.5(c) Define and describe the following terms (i) Dirichlet Conditions (ii) Energy and Power Signal (iii) [5] Sampling theorem (iv) Linearity and stability
