BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO2022)				
CLASS: BRANCH	B.Tech. : EEE	(0) 0.0 0	SEMESTER: V SESSION: MO2022	
TIME:	03 Hours	SUBJECT: EE305 DIGITAL SIGNAL PROCESSING	FULL MARKS: 50	
INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates				
Q.1(a)	(i) h(n) = 5 δ (n) -	igital filter whose impulse responses are given belo $7\delta(n-1) + 7\delta(n-3) - 5\delta(n-4)$ (ii) $h(n) = \delta(n) + \delta(n-2)$	w:	[2] CO-4
Q.1(b)	(ii) (iii) $h(n) = \delta(n) - \delta(n-1)$ (iv) $h(n) = \delta(n) + \delta(n-1)$ A length 9 Type-1 real coefficient FIR filter has the following zeros $Z_1 = -0.5$, $Z_2 = 0.3+j$ 0.5, $Z_3 = 0.5 + j\sqrt{3/2}$ (i) Determine the locations of the remaining zero's. (ii) What is the causal type linear phase transfer function?			[3] CO-4
Q.1(c)	Design an FIR filter to meet the following specifications: (i) Pass-band edge: $F_P = 2$ KHz (ii) Stop-			[5] CO-4
Q.2(a)	Consider the function under g(t). (Using DSI	n g(t) = $e^{-t} \sin(2\pi t) u(t)$, where u(t) is the step f 2 tools)	unction. Calculate the area	[2] CO-2
Q.2(b)		pipelining of instruction execution.		[3] CO-5
Q.2(c)	Explain Harvard and SHARC architectures. Also, describe the various addressing modes used in DSP processor.			[5] CO-5
Q.3(a)	The following causal IIR digital transfer function was designed using the impulse invariant method with T= 0.3s:			[2] CO-4
Q.3(b) Q.3(c)	Develop the recursive $C_3(x)$ and $C_4(x)$ using Design an IIR low-	+ $\frac{3z}{z - e^{-1.2}}$ causal analog transfer function. e relation to determine the Chebyshev polynomial recursive relation. Also, plot the graph $C_N(x)$ versus pass Butterworth filter using bilinear transfor	x for N= 3,0 and 4.	CO-4 [5]
	specifications: Pass band: 0.8	$\leq H(e^{j\omega}) \leq 1, \qquad \omega < 0.2\pi$		CO-4
		ما دم م م م الد	ne T= 1s)	
Q.4(a)		te the number of complex multiplications, numbe ocations needed in the calculation of DFT using DIT-		[2] CO-3
Q.4(b)	Determine the z-tran	sform for $\mathbf{x}(n) = n (\frac{1}{2})^{ n }$. Sketch the pole-zero		[3] CO-3
Q.4(c)	2, 5} with a 12 point DFT given by X(k). Evaluate (i) X (0), (ii) X (6), (iii) $\sum_{k=0}^{11} X(k)$,			[5] CO-3
	$(iv)\sum_{k=0}^{11}e^{-j\frac{-1}{6}}X(k)$	k) and (iv) $\sum_{k=0}^{11} X(k) ^2$.		
Q.5(a)		y(t) of an LTI system are related by differential equ t) = x(t). Find the impulse response h(t) of the system e ROC).		[2] CO-2

ΡΤΟ

- [3] **CO-3** Q.5(b) A continuous-time periodic signal x(t) is real-valued and has a fundamental period T = 8. The nonzero Fourier series coefficients for x(t) are $X_1 = X_{-1} = 2, X_3 = X_{-3}^* = 4j$. Express x(t) in the form $x(t) = \sum_{n=0}^{\infty} A_n \cos(\omega_n t + \phi_n)$ Q.5(c) Define and describe the following terms (i) Dirichlet Conditions (ii) Energy and Power Signal (iii) Sampling theorem (iv) Linearity and stability
- [5] CO-1

:::::23/11/2022:::::M