CLASS: B.TECH. BRANCH: EEE

SUBJECT : EE301 AC ROTATING MACHINES

3. Before attempting the question paper, be sure that you have got the correct question paper.

TIME: 02 Hrs.

INSTRUCTIONS:

The total marks of the questions are 25.
Candidates attempt for all 25 marks.

load at 0.8 p.f. lagging.

4. The missing data, if any, may be assumed suitably.

SESSION : MO/2022

FULL MARKS: 25

SEMESTER: V

5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.				
Q1 (a) (b)	How will you define a synchronous machine? The armature coils of a 3-phase, 4-pole, 24-slot alternator are short pitched by one slot. Determine (i) distribution factor and (ii) pitch factor.	[2] [3]	CO 1, 2 1, 2, 3	BL 1 3
Q2 (a) (b)	Why do we prefer short-pitched winding? Calculate the no-load terminal voltage of a 3-phase, 8-pole, star connected alternator running at 750 rpm having following data: Sinusoidally distributed flux per pole = 55 m Wb Total No. of armature slots = 72; Number of conductors/slot = 10 Distribution factor = 0.96; Assume full pitch windings.	[2] [3]	1, 2, 3, 4	5 3
Q3	Develop a double-lay, short-pitch (5/6), distributed lap-winding (for one- phase only) for a 3-phase, 4-pole, 48-slot armature of an alternator. Also, give the winding scheme for all three phases.	[5]	1, 3, 4, 5	6
Q4 (a)	What are the different methods by which excitation is provided in synchronous machines?	[2]	1, 2,	1
(b)	A three-phase, star connected, 20 MVA, 11 kV, 50 Hz alternator produces a short-circuit current equal to full-load current when a field current of 70A passes through its field winding. The same field current produces an emf of 1820V (line to line) on an open circuit. If the alternator has a resistance between each pair of terminals as measured by DC is 0.16 ohm, and the effective resistance is 1.5 times the ohmic resistance, what will be its full-load regulation at 0.707 pf lagging?	[3]	1, 2, 3, 4	3
Q5 (a)	The armature of a three-phase, star-connected, 10 kVA, 400 V, 50 Hz salient pole alternator has a resistance of 1 ohm per phase. Its direct and quadrature axis reactances are 15 ohm and 9 ohm respectively. The machine is delivering rated load at rated voltage and pf 0.8 lagging. If the load angle is 17°, draw the phasor diagram.	[2]	1, 2, 3	3
(b)	A 762 kVA, 2200 V, 50 Hz, three-phase, star connected alternator has an effective resistance of 0.6 ohm per phase. A field current of 30 A produces a full-load current on short circuit and a line to line emf of 1039 V on open circuit. Determine the power angle of the alternator when it delivers full	[3]	1, 2, 3, 4	3

:::::: 26/09/2022 :::::M