BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION)
CLASS: BTECH
SEMESTER : III
BRANCH: EEE
SESSION : MO/2022
SUBJECT: EE205 CIRCUIT THEORY
TIME: $\quad 3: 00$ Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) i. Define 1) v-shift 2) f-loop 3) branch incidence 4) twigs
ii. Branch current and loop current relation are expressed in matrix form
as: $\left[\begin{array}{l}i_{1} \\ i_{2} \\ i_{3} \\ i_{4} \\ i_{5} \\ i_{6} \\ i_{7} \\ i_{8}\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3} \\ I_{4}\end{array}\right]$
Q. 1 (b) Draw the graph of the network shown in fig formulate the cutest matrix, write the equilibrium equation in matrix form on node basis

Q.2(a) i. Prove the Tellegen's Theorem for $\mathrm{K}^{\text {th }}$ branch
ii. Verify the reciprocity theorem for the circuit shown below.

Q.2(b) Prove the property of STM $\phi\left(t_{2}-t_{1}\right) \phi\left(t_{1}-t_{0}\right)=\phi\left(t_{2}-t_{0}\right)$ for any $\mathrm{t}_{0}, \mathrm{t}_{1}, \mathrm{t}_{2}$

Obtain the state equation for the zero input networks shown in fig state variables are I_{L} and V_{C}

Q.3(a) Find the driving point impedance, OCNF and SCNF of the following circuit.

Q.3(b) Find the open circuit -parameter matrix of the following network.

Q.4(a) What is the positive real function?

Test whether the following function is prf:
$F(s)=2 s^{4}+7 s^{3}+11 s^{2}+12 s+4$
Q.4(b) Synthesize the function in couer form II :
$Y(s)=\frac{\left(s^{2}+2\right)\left(s^{2}+20\right)}{s\left(s^{2}+12\right)}$
Q.5(a) Write the difference between Butterworth polynomial and Chebysev polynomial.
Q.5(b) The specification for LP filter are:
$\alpha_{p} \leq 1 d B$ for $f \leq 2 M H z$
$\alpha_{s} \geq 40 d B$ for $f \geq 8 M H z$ determine n and t for Butterworth and Chebychev polynomials.

