BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	:	BTECH EEE											SEMESTER : III SESSION : MO/2022			
TIME		3.00		oure				SUBJ	ECT: EE20	5 CIRCUIT 1	THEOR	(50
I I/₩\ ∟ .	5.00 10015													I OLL MAILES, JU		
INSTRUC 1. The c 2. Atten 3. The r 4. Befor 5. Table	CTIO ques npt a nissi re at es/Da	NS: tion all qu ng d temp ata h	pa lata pti lan	per stior a, if ng t d bo	cont ns. any, he q pok/(tains , may uesti Grapl	5 que y be as ion pa h pape	stions e ssumed per, be er etc. t	each of 10 suitably. sure that to be supp	marks and you have g lied to the	total 5 ot the candid	0 marks. correct ques ates in the e	stion exami	paper. nation ha	ıll.	
Q.1(a)	i. Define 1) v-shift 2) f-loop 3) branch incidence 4) twigs														[2+3]	
	11.	Bra i]	anc Г	n O	Curi	rent 1	and 0]	ιοορ	current	relation	are	expressed	IN	matrix	form	
		<i>i</i>		_1	_1	_1	0									
		$\frac{i_2}{i}$		0	-1 1	-1		ΙŢ								
		<i>i</i> ³		1	1	0		$\begin{bmatrix} I_1 \\ I \end{bmatrix}$								
	as:	<i>i</i> ₄	=	1	0	1		$\begin{bmatrix} I_2 \\ I \end{bmatrix}$								
		<i>l</i> ₅		1	1	-1		$\begin{bmatrix} I_3 \\ I \end{bmatrix}$								
		<i>l</i> ₆		1	1	0		I_4								
		l_7		1	0	0	0									
		\dot{i}_8		0	0	0	1									

Q.1(b) Draw the graph of the network shown in fig formulate the cutest matrix, write the equilibrium [5] equation in matrix form on node basis

Q.2(a) i. Prove the Tellegen's Theorem for Kth branch ii. Verify the reciprocity theorem for the circuit shown below. [2+3]

Q.2(b) Prove the property of STM $\phi(t_2 - t_1)\phi(t_1 - t_0) = \phi(t_2 - t_0)$ for any t₀, t₁,t₂ [2+3] Obtain the state equation for the zero input networks shown in fig state variables are I_L and V_C

ΡΤΟ

Q.3(b) Find the open circuit -parameter matrix of the following network.

Q.4(a)	What is the positive real function?	[5]
	Test whether the following function is prf:	
	$F(s) = 2s^4 + 7s^3 + 11s^2 + 12s + 4$	
Q.4(b)	Synthesize the function in couer form II :	[5]
	$Y(s) = \frac{(s^2 + 2)(s^2 + 20)}{s(s^2 + 12)}$	

- Q.5(a) Write the difference between Butterworth polynomial and Chebysev polynomial.
- Q.5(b) The specification for LP filter are:

 $\alpha_p \leq 1 dB$ for $f \leq 2 M H z$

 $\alpha_s \geq 40 dB$ for $f \geq 8 MHz$ determine n and t for Butterworth and Chebychev polynomials.

:::::24/11/2022::::E

[2+3]

[5]

[5] [5]