BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BTECH BRANCH: EEE

SUBJECT: EE201 ELECTRICAL MEASUREMENT AND INSTRUMENTATION

TIME: 2 HOURS

FULL MARKS: 25

CO

BL

SESSION: MO/2022

SEMESTER: III

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.

3. Before attempting the question paper, be sure that you have got the correct question paper.

- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1	(a)	Draw the block diagram of a generalized instrumentation system and explain the function of various blocks	[3]	C01	BL2
Q1	(b)	Define and explain precision and resolution for a measuring instrument.	[2]	C01	BL1
Q2 Q2	(a) (b)	What are gross errors. Give example. How can gross errors be avoided. The resistance of an unknown resistor is determined by wheatstone bridge. The solution for the unknown resistance is stated as $R_4 = R_1R_2/R_3$ where limiting values of various resistances are $R_1 = 500 \ \Omega \pm 1\%$, $R_2 = 615 \ \Omega \pm 1\%$, $R_3 = 100 \ \Omega \pm 0.5\%$. Calculate (a) the nominal value of the unknown resistor (b) the limiting error in percent of unknown resistor.	[2] [3]	CO1 CO1	BL1 BL5
Q3	(a)	Starting from the dimensions of M, L and T obtain the relationship between electrostatic and electromagnetic system of units	[2]	C01	BL4
Q3	(b)	Explain how controlling torque can be obtained in a measuring instrument by gravity control.	[3]	CO2	BL2
		A permanent magnet moving coil (PMMC) instrument has a full scale deflection of 90° for a current of 2 A. The deflecting torque in a PMMC ammeter is directly proportional to current in the moving coil. Find the value of current required for a deflection of 30° if the instrument is (a) spring controlled (b) gravity controlled			
Q4	(a)	A basic d'Arsonval movement with a full scale reading of 50 μ A and an internal resistance of 1800 Ω is available. It is to be used for two ranges 0 - 1 V and 0 -5 V using individual multipliers for each range. Calculate the values of the individual multipliers.	[2]	CO2	BL5
Q4	(b)	Explain the construction and working of an attraction type moving iron instrument.	[3]	CO2	BL2
Q5	(a)	The inductance of a moving iron instrument is given by $I = (10 + 50 - \theta^2) \mu H$	[2]	CO2	BL5
		where θ is the deflection in radian from zero position. The spring constant is 12 x 10 ⁻⁶ N-m/rad. Find the deflection for a current of 5 A.			
Q5	(b)	Describe the constructional details and working of an electrodynamometer type wattmeter. Obtain the expression for power.	[3]	CO2	BL2

:::: 27/09/2022 M ::::::