CLASS: BTECH/IMSC
BRANCH: BT/CHEMICAL/CIVIL/MECH/PIE/PHYSICS
SUBJECT: EE101 BASIC OF ELECTRICAL ENGINEERING
TIME: 2 HOURS
INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
\qquad
Q.1(a) Determine and sketch the voltage in a 3 H inductor if the current waveform is as below:

Q.1(b) Evaluate the mesh currents.

Q.2(a) Apply current division and resistance combination methods to find i_{1} and i_{2}.

Q.2(b) Examine the current through the 2Ω resistor by using source transformations.

Q.3(a) What is a magnetic circuit?

Give the analogy between a magnetic circuit and an electrical circuit.
Q.3(b) A ring of ferromagnetic material has a rectangular cross-section. The inner diameter is 7.4 in ., the outer diameter is 9 in ., and the thickness is 0.8 in . There is a coil of 600 turns wound on the ring. When the coil carries a current of 2.5 A , the flux produced in the ring is $1.2 \times 10-3 \mathrm{~W}$.
Express (i) Magnetic field intensity (ii) Reluctance and (iii) Permeability
Q.4(a) Compute the average and effective values of the square voltage wave shown.

Q.4(b) The instantaneous values of two alternating voltages are represented respectively by $v_{1}=60 \sin \theta$ volts and $v_{2}=40 \sin (\theta-\pi / 3)$ volts. Derive an expression for the instantaneous value of the sum of voltages using the phasor diagram.
Q.5(a) Sketch the variation of reactance and current with frequency for a purely inductive and capacitive circuit.
Q.5(b) A coil having a resistance of 12Ω and an inductance of 0.1 H is connected across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (a) the reactance and the impedance of the coil; (b) the current; (c) the phase difference between the current and the applied voltage.

