CLASS: BRANCH	BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/SP20**) IMSC SEMESTER:III 1: QEDS SESSION:MO2022	
TIME:	SUBJECT: ED207 PROBABILITY - II 03 Hours FULL MARKS: 50	
1. The o 2. Atter 3. The o	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. mpt all questions. missing data, if any, may be assumed suitably. es/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates Let X, Y be two independent discrete random variables with pmf	[5+5]
	$p(z) = \begin{cases} \frac{1}{2}, & \text{if } z = 0, 1\\ 0, & \text{otherwise.} \end{cases}$ Find the distributions of X+Y and X-Y.	
Q.2(a)	Let X and Y be jointly bivariate normal random vector with $\mu_X = 0$, $\mu_Y = -1$, $\sigma_X^2 = 1$, $\sigma_Y^2 = 4$, and $\rho = -1/2$. Find the distribution of X+Y and hence calculate P[X+Y > 0].	[5+5]
Q.3(a)	Find the mean and variance of the distribution with pdf given by $f(x) = \begin{cases} 1 - 1 - x , & 0 < x < 2 \\ 0, & otherwise \end{cases}$	[8]
Q.3(b)	State Monotone Convergence Theorem for a sequence of random variables.	[2]

Q.4(a) State Central Limit Theorem. Analysis of computer travel shows that the number of passengers per car, X, is a discrete Q.4(b) random variable with independent, identical distributions, such that E(X) = 1.2 and Var(X) =1.0. Estimate the probability that in a sample of 100 cars, the total number of passengers is

140 or fewer.

Calculate the MGF of the random variable with the density function given by Q.5 [5+2+3] $f(x) = ae^{-\alpha x}$, x, a > 0. Hence, obtain the mean and variance of the distribution.

[2]

[8]

:::::24/11/2022::::E