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Q1 (a) Find the general solution of the following differential equation  

(𝐷 + 2)𝑦 = 𝑥 𝑒 + 𝑒 cos 2𝑥, where 𝐷 ≡
𝑑

𝑑𝑥
. 
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 (b) Using appropriate transformation, reduce the following equation into a linear differential 
equation with constant coefficients, and hence the solve the equation. 

(5 + 2𝑥) 𝑦 − 6(5 + 2𝑥)𝑦 + 8𝑦 = 8(5 + 2𝑥) . 

 
 

[5] 
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Q2 (a) Show that 

𝟏

𝟑𝒙𝟑𝒚𝟑 is an integrating factor of the differential equation 𝒚 𝒙𝒚 + 𝟐𝒙𝟐𝒚𝟐 𝒅𝒙 +

𝒙 𝒙𝒚 − 𝒙𝟐𝒚𝟐 𝒅𝒚 = 𝟎, and hence solve it. 
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 (b) Solve the differential equation 𝑫𝟐 − 𝟏 𝒚 = 𝟏, given that 𝒚(𝟎) = 𝟎 and 𝒚 tends to a 
finite limit as 𝒙 → −∞. 
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 (c) Using Laplace transform, evaluate the integral ∫
𝒆 𝒕 𝐬𝐢𝐧 𝒕

𝒕
 𝒅𝒕.

𝟎
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Q3 (a) Evaluate the power series solution of the following differential equation about 𝑥 = 0.  

(1 − 𝑥 )𝑦 − 2𝑥𝑦 + 2𝑦 = 0. 

 
[7] 
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 (b) Classify the ordinary point, regular singular point, and irregular singular point at 𝒙 = −𝟐 
for the following differential equation  

𝑥(𝑥 − 1) (𝑥 + 2)𝑦 + 𝑥 𝑦 − (𝑥 + 2𝑥 − 1)𝑦 = 0. 
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Q4 (a) Given that 𝑓(𝑡 + 2𝜋) = 𝑓(𝑡). Find the Laplace transform of the function  

𝑓(𝑡) =
sin 𝑡, 0 < 𝑡 < 𝜋
0, 𝜋 < 𝑡 < 2𝜋.
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CO4 

 (b) Using Laplace transform, solve the following initial value problem. 
𝑦 − 3𝑦 + 2𝑦 = 𝑒 , 𝑦(0) = 1, 𝑦 (0) = 0. 
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Q5  Solve the following system of homogeneous linear differential equations by finding 

eigenvalue and eigenvectors of the coefficient matrix. 
𝑦 (𝑥)

𝑦 (𝑥)

𝑦 (𝑥)

=
1 1 3
1 5 1
3 1 1

𝑦
𝑦
𝑦

. 
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