BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)		
CLASS: BRANCH	IMSc. SEMESTE : CQEDS SESSION:	FER: 1 N: MO/2022	
	SUBJECT: ED101 INTRODUCTORY ANALYSIS		
TIME:	03 Hours FULL MA	FULL MARKS: 50	
	TIONS: Juestion paper contains 5 questions each of 10 marks and total 50 marks.		
	npt all questions.		
4. Befor	nissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question paper.		
5. Table	s/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates.		
0.4(2)		Marks	C0
Q.1(a)	Define open set. Give an example of a non-empty set which is open and closed both. Justify your answer.	[2+3]	C01
Q.1(b)	Prove that every convergent sequence is bounded. Is the converse true? Justify your answer.	[3+2]	CO2
Q.2(a)	Test the convergency for the series $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n+1}}{n^{\frac{3}{2}}}$.	[5]	CO2
Q.2(b)	State Rolle's theorem for the function of single variable $f(x)$, defined on $[a, b]$. Examine the		
Q.2(D)	validity of the theorem for the function of single variable $f(x)$, defined on $[u, b]$. Examine the validity of the theorem for the function $f(x) = 1 - (x - 1)^{\frac{2}{3}}$ on $[0,2]$.	[2+3]	CO3
Q.3(a)	Identify the point(s) of the discontinuity and the types of the discontinuity (if any) at those points for the function $f(x)$, defined on $[-1,1]$, as follows.		
	$f(x) = [x+1]\sin\frac{1}{x}, x \in (-1,0) \cup (0,1)$	[5]	CO3
	= 0, otherwise		
0.2(1)	where [x] denotes the largest integer $\leq x$.		604
Q.3(b)	Find the values of <i>a</i> , <i>b</i> and <i>c</i> such that $lim_{x\to 0} \frac{a e^{x} - b \cos x + c e^{-x}}{x \sin x} = 2.$	[5]	C04
Q.4(a)	Find the <i>n</i> th order derivative of the function $y = \frac{x^2}{(x+2)(2x+3)}$.	[4]	CO4
		L 'J	
Q.4(b)	If $y = e^{m \sin^{-1}x}$, show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$. Hence find $y_n(0)$.	[3+3]	CO4
Q.5	Providing necessary information, sketch of the graph of the curve	F4 01	605
	$x^3 + y^3 + 3xy = 0.$	[10]	CO5

:::::15/03/2023:::::M