BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/2022

(END SEMESTER EXAMINATION MO/2022					
CLASS: BRANCH		SEMESTER: I SESSION: MO-2022			
SUBJECT: EC501 LOW POWER DEVICES & INTEGRATED CIRCUITS					
TIME:	03 Hours FL	3 Hours FULL MARKS			
INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates					
				60	ы
Q.1(a)	Explain why diffusion current occurs in semiconductor. Explain with su diagram and hole diffusion current equation.	iitable	Marks [2]	CO 1	BL 2
Q.1(b)	Explain how a pulse of excess electrons injected at $x = 0$ at time $t = 0$ will sout in time. Substantiate your answer with suitable diagram.	spread	[3]	1	2
Q.1(c)	Write down the expression of built-in potential and junction capacitance. explain each term used the expressions.	Briefly	[5]	1	3
Q.2(a)	Diagram the cross-sectional structure of an NMOSFET and PMOSFET takin type lightly doped substrate.	gap-	[2]	2	3
Q.2(b)	Explain the Principle of Operation of and MOSFET with suitable diagram.		[3]	2	4
Q.2(c)	What are the various Regions of Operation of MOSFET. Mention the condition each region. Write down the drain-to-source current (I_{DS}) equation in each r		[5]	2	3
Q.3(a)	What are the various Short Channel Effects?		[2]	3	2
Q.3(b)	Write down the expression to show the effect of the vertical field on the m and explain each term in it.	obility	[3]	3	3
Q.3(c)	Explain Channel Length Modulation (CLM) and its effect on drain-to-source c and small-signal resistance of a MOSFET.	urrent	[5]	3	4
Q.4(a)	Write down the Dynamic Power Consumption and explain each tern in it.		[2]	4	6
Q.4(b)	Write down the various leakage currents in CMOS Devices and explaim mechanism of gate leakage current (I_G) .	in the	[3]	4	6
Q.4(c)	Explain the mechanism of gate-induced drain leakage current (GIDL) and p through.	ounch-	[5]	4	4
Q.5(a)	Schematize the layout an CMOS Inverter.		[2]	5	6
Q.5(b)	Write the significance of any three design rules. Explain the various Leakage reduction Techniques.		[3]	5 5	6 4
Q.5(c)	Explain the various Leakage reduction rechniques.		[5]	J	4

:::::21/11/2022::::E