BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BTECH SEMESTER: V
BRANCH: ECE SESSION: MO/2022

SUBJECT: EC319 VLSI SYSTEMS

TIME: 3:00 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a) Find the region of operation of the pMOSFET and nMOSFET shown below. [2] 1 2

Region of operation?

advantages and disadvantages with proper reasoning.

Q1 Q1	(b)	List various secondary effects in a short-channel MOSFETs? Write the expression of dynamic power consumption. Explain each term in it. Write the expression of Power-Delay Product (PDP) and Energy-Delay Product (EDP). Explain each term in them.	[3] [5]	1	1 3
Q2	(a)	A wire, which is 10 cm long and 1 µm wide, is routed on the polycide, the sheet resistance of which is 4 Ohm-per-square. Compute the total resistance of the wire.	[2]	2	3
Q2	(b)	What is skin effect and skin depth? Express the equation of skin depth mentioning each term in minimum words.	[3]	2	2
Q2	(c)	Explain how a Schmitt trigger circuit can guard against noise-induced false switching when used in an input pad. Substantiate your answer with suitable diagram.	[5]	2	3
Q3 Q3	(a) (b)	Explain why pseudo nMOS logic circuits are called ratioed circuits? Diagram the transistor-level circuit diagram of an inverter and implement the same with Verilog HDL using switch-level modeling style.	[2] [3]	3	4 4
Q3	(c)	Using CMOS logic styles realize the Co (carry out) function, which is given by Co= A.B+Ci.(A+B), and SUM function, which is given by SUM = A.B.Ci + (A+B+Ci), where Ci is the input carry.	[5]	3	4
Q4	(a)	Schematize transistor-level circuit of CMOS positive-level-sensitive D latch with minimum number MOSFET.	[2]	4	5
Q4	(b)	Schematize transistor-level implementation of SR flip-flop with NAND as well as NOR gate.	[3]	4	5
Q4	(c)	Schematize multiplexer-based NMOS latch using NMOS-only pass transistors. Explain its	[5]	4	5

- Q5 (a) A MOSFET is biased at a drain current of 0.5 mA. If μ_n Cox = 100 μ A/V², W/L = 10, and λ [2] 5 5 = 0.1V $^{-1}$, estimate its small-signal parameter g_m .
- Q5 (b) Estimate the small-signal voltage gain of the CS stage shown in Fig. 7.6 if $I_D = 1$ mA, [3] 5 5 $\mu_n C_{ox} = 100 \ \mu A/V^2$, $V_{TH} = 0.5 \ V$, and $\lambda = 0$. Verify that M_1 operates in saturation.

$$V_{DD} = 1.8 \text{ V}$$

$$R_{D} \ge 1 \text{ k}\Omega$$

$$V_{\text{in}} \sim V_{\text{out}}$$

$$M_{1} \frac{W}{L} = \frac{10}{0.18}$$

Q5 (c) Schematize CS stage with load resistor R_D and source degeneration resistor R_S . [5] 5 6 Schematize its small signal model and derive the expression of its voltage gain.

:::::28/11/2022::::M