BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS BRAN		-		TER: V N: MO	
SUBJECT: EC305 SIGNAL PROCESSING TECHNIQUES					
TIME:	TIME: 2 HOURS		FULL MARKS: 25		
 INSTRUCTIONS: The total marks of the questions are 25. Candidates attempt for all 25 marks. Before attempting the question paper, be sure that you have got the correct question paper. The missing data, if any, may be assumed suitably. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q1 (a)		ine stability of a digital system. Test for the stability of the system h(n)=0.2 ⁿ	[2]	CO CO1	BL L1,L3
Q1 (b)	equ). ermine the zero-input response of the system described by the difference ation)-3y(n-1)-4y(n-2) =0	[3]	CO1	L2
	For	d the circular convolution of x(n)= {1, 0.5} and y(n)= {0.5, 1}. The given $x(n) = 0.3^n u(n) + 0.8^n u(-n-1)$. Find $X(z)$ and show ROC.	[2] [3]	CO1 CO1	L3 L3
Q3 (a)		ve that circular convolution in time domain is equivalent to multiplication of is in frequency domain.	[2]	CO1	L4
Q3 (b)	Ske	tch the butterfly structure for computing the FFT of the sequence)={1,2,3,4,-1,-2,-3,-4}, using DIT technique.	[3]	C01	L4
		out the difference between FIR and IIR filters. lize the following system in Direct form II. $H(z) = \frac{1 + 3z^{-1}}{1 - 5z^{-1} + 3z^{-2}}$	[2] [3]	CO2 CO2	L1 L3
Q5 (a)		the given system $H(z)$, if 2 is quantized to 2.1 and 3 is quantized to 3.1. Find quantization errors in the poles of the system.	[2]	CO2	L2

$$1 + 3z^{-1}$$

$$H(z) = \frac{1+3z}{1-2z^{-1}+3z^{-2}}$$

(b) Realize the given system in cascade form.

[3] CO2 L3

$$H(z) = \frac{1 + 0.25z^{-1}}{(1 - 2z^{-1} + 0.25z^{-2})(1 - 3z^{-1} + 0.2z^{-2})}$$

:::::: 28/09/2022 M ::::::

20/00/2022 11