BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION) CLASS: BTECH SEMESTER: III BRANCH: ECE+CS+IT+EEE SESSION: MO/2022 SUBJECT: EC203 DIGITAL SYSTEM DESIGN TIME: 3 HOURS FULL MARKS: 50 ## **INSTRUCTIONS:** - 1. The question paper contains 5 questions each of 10 marks and total 50 marks. - 2. Attempt all questions. - 3. The missing data, if any, may be assumed suitably. - 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates. | Q1
Q1
Q1 | (b) | What is gray code and where it is used? How is it converted to Binary code? Define each of the following electrical characteristics of logic gates: V_{OH} , V_{IL} , I_{OL} , I_{IH} . Implement the logic function using CMOS, $F=[(A+B)(C+D)(E+F(G+H))]$. | [2]
[3]
[5] | CO
1
1
1 | BL
1
2
3 | |----------------|-------|---|-------------------|-------------------|-------------------| | Q2
Q2 | (b) | Define minterms and maxterms for three variables. Simplify the following logic function using K-map. $F(A, B, C, D) = \sum (2, 7, 9, 14, 15) + \sum_{d} (0, 3, (10))$ | [2]
[3] | 2 2 | 1
2 | | Q2 | (c) | Consider a 3-bit binary no. X_3 X_2 X_1 where X_1 is LSB. Design a circuit using NAND gate that will determine whenever the binary is greater than 3. | [5] | 2 | 4 | | Q3
Q3
Q3 | (b) l | Give the logical design of 2x4 decoder. Design the circuit of a BCD adder. Implement the following expression using a single 8:1 multiplexer. $F(A, B, C, D) = \sum (0, 2, 3, 6, 8, 9, 12, 14)$ | [2]
[3]
[5] | 3
3
3 | 1
4
3 | | Q4
Q4 | | Draw the circuit of a serial-in-serial out shift register with J-K F/F. | [2]
[3] | 4
4 | 1
2 | | Q4 | | Explain with diagram the working of a 3-bit ripple counter. Design a synchronous counter with J-K F/F for state diagram: $1\rightarrow2\rightarrow3\rightarrow1$. | [5] | 4 | 3 | | Q5 | , , | What is programmable logic device? What are the advantages of it? Name different types of it. | [2] | 5 | 1 | | Q5
Q5 | | Explain the working of a PLA with a standard logic circuit and diagram. Explain the working of a 4-bit synchronous up-down counter with diagram. | [3]
[5] | 5
4 | 2
3 | :::::21/11/2022::::E