BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH		ESTER : I SION : MO/2022		
SUBJECT: EC101 BASICS OF ELECTRONICS AND COMMUNICATION ENGG. TIME: 3 Hours FULL MARKS: 50				
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a)	Explain the V - I Characteristics curve of Zener Diode. Compare the avalanche breakdown mechanism with the Zener breakdown mechanism for a Zener Diode.	[5]	CO CO1	BL BL2
Q.1(b)	With neat sketch, explain the working principle of a full wave center tapped type rectifier with a capacitor filter. State the formula for ripple factor of a capacitive	[5]	CO1	BL2

Q.2(a) Draw the input and output characteristics of common-emitter configuration of NPN [5] CO2 BL4 transistor. Derive the relation between α , β and γ . Deduce the dc bias voltage V_{CE} and the current I_C for voltage divider configuration shown in figure 1.

filter.

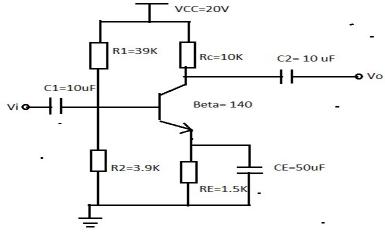


FIGURE 1

- Q.2(b) Derive the Shockley's equation for drain current for JFET and show the Pinch off [5] CO2 BL2 Region (Vp) in a JFET Characteristics curve.
- Q.3(a) Explain the working of the RC phase shift oscillator. Derive its frequency of [5] CO2 BL2 oscillation.
- Q.3(b) In the circuit shown in figure 2, $R_1 = 100$ K Ohm, $R_2 = 150$ K Ohm and $R_f = 300$ K Ohm. [5] CO3 BL4 If $V_1 = 1V$ and the op-amp saturates at $\pm 15V$ then examine the range of V_2 for linear operation.

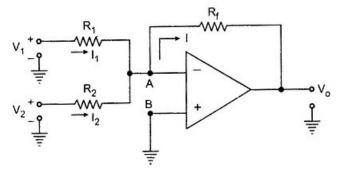


Fig. 2.25 Inverting summer FIGURE 2

- Q.4(a) Explain Half adder, full adder circuits. How an XOR gate can be used as selective [5] CO4 BL2 inverter?
- Q.4(b) Design a 4-bit adder/subtractor circuit using full adders and X-OR gates as selective [5] CO4 BL5 inverter.
- Q.5(a) Explain amplitude modulation. Derive the relationship between total transmitted [5] CO5 BL2 power and carrier power of AM signal. Calculate its transmission power efficiency.
- Q.5(b) An AM signal has a peak unmodulated carrier voltage, $V_c = 100 \text{ V}$, a load resistance, [5] CO5 BL4 $R_L = 50 \Omega$, and a modulation index, $m_a = 1$. Determine the carrier power, total sideband power, and total power of the modulated AM signal. Also sketch the AM power spectrum.

:::::20/03/2023:::::M