BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	- :	MTECH (COGNIZANT) SEMEST CS SESSIO			FER : I N : MO/2022		
TIME:		3 Hours	SUBJECT: CS531 DATA STRUCTURE AND ALGORITHMS FULL A	MARKS: 50			
1. The 2. Atte 3. The 4. Befo	mpt all o missing re atten	n paper cont questions. data, if any, npting the q	tains 5 questions each of 10 marks and total 50 marks. , may be assumed suitably. uestion paper, be sure that you have got the correct question paper. Graph paper etc. to be supplied to the candidates in the examination	hall.			
Q.1(a) Q.1(b)			f a binary Tree is lgn. ce T(n)=2T(n/3) + n²	[5] [5]	CO 1 1	BL 3 3	
Q.2(a) Q.2(b)					2 2	3 4	
Q.3(a) Q.3(b)	Write an algorithm to find the k th smallest element in a Binary Search Tree. Write an algorithm for the post order traversal of a Binary Tree and analyze it's time complexity.				3 3	3 3	
Q.4(a) Q.4(b)	Write an algorithm for finding the MST and analyze it's time complexity. Discuss hashing and methods of collision handling with examples.				4 4	4 3	
Q.5(a)		n algorithm e complexit	for finding a shortest path from any node of a directed graph and analyze	[5]	5	3	
Q.5(b)			y. for Quicksort and analyze it's time complexity. Explain with an example.	[5]	5	4	

:::::16/03/2023:::::M