(END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH/PREPHD : CSE	SEMESTER : I SESSION : MO/2022
	SUBJECT: CS506 MACHINE LEARNIN	G
TIME:	3:00 Hours	FULL MARKS: 50
INSTRUC 1. The q 2. Attem 3. The m 4. Before 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 npt all questions. nissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the c s/Data hand book/Graph paper etc. to be supplied to the candida) marks. orrect question paper. tes in the examination hall.
Q.1(a)	Elaborate upon the definition of Machine Learning, and in which sin	tuations is its use justified/ better? [5]
Q.1(b)	Illustrate the steps of designing a learning system, explaining approximation/learning algorithm.	about data, target function and [5]

Q.2(a) Why is SVM known as a large margin classifier?

Apply SVM to evaluate and select the best decision boundary from the following hyperplanes: {(-1, 0, 2), (-2, ¹/₂, 1)}.

X1	X2	у
1	0	-1
1	-2	-1
2	-1	-1
3	3	+1
4	-2	-1
4	3	+1
5	3	+1
6	2	+1

Q.2(b) Describe how principal component analysis is applied for feature reduction?

- Q.3(a) Formulate the steps of Decision Tree classifier model building. What is Decision Tree pruning?
- [5] Given a single neuron (sigmoid function), two inputs, no bias, and one training example: $\{x_1=1, x_2=1, x_3=1, x$ Ī5Ī Q.3(b) y=1}, w1=0.4, w2=0.6, learning rate=0.5. Compute the new values for w1 and w2 after one iteration of backpropagation.
- Q.4(a) Explain the hierarchical clustering algorithm with an example. [5] Q.4(b) A= [3, 20, 4, 70, 41, 13, 57, 89, 5, 10]. Let K=2, Initial means are m1=3, m2=20 [5] Compute the elements in clusters C1 and C2 after two iterations of K-Means algorithm and the total cost (computed as Sum squared error)
- Q.5(a) What is soft clustering? Summarize the steps of Expectation maximization algorithm. [5] Q.5(b) Evaluate the working of a bagging ensemble with a suitable example [5]

:::::24/11/2022::::E

[5]

[5]

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI